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BACKGROUND

• A lot of effort over the last ~40 years studying formal dialogue 

• As a structured interaction - dialogue/dialectical games 

• A game involving two or more participants/roles who take turns to make moves by 
saying things 

• (Deliberately excluding linguistic studies of dialogue for the moment) 

• Aimed generally at specific “types” of dialogues, specific areas of human activity, or 
specific dialogical behaviours 

• Intensive during last ~20 years with advent first of agent/software interaction and more 
recently of machine learning/dialogue generation/conversational AI/Interfaces.



PROBLEM/CRITICISM

"Dialogue games are too rigid/brittle for modern AI systems & don’t 
have the flexibility of data-driven systems” — convenient straw person 

• How can we address this? 

• How can we bring together & re-contextualise the huge body of work 
on normative dialogues so that it can be easily & usefully exploited?



ELEMENTS OF A SOLUTION

• Perhaps a part of the solution lies literally in being less rigid - building and adapting 
dialogue games as needed to suit the dialogical context 

• How? 

• By exploiting shifts & embeddings 

• By reusing existing game rules in different contexts 

• By making the game building process more declarative 

• A starting place is to exploit the Dialogue Game Description Language (DGDL) eco-
system then to adapt work on desiderata and drosophila to test the outputs of the system



THE DGDL ECO-SYSTEM,

• DGDL is a simple, grammar based, language for describing the rules of dialogue games: 

• Expressive - account for a wide variety of dialogical behaviour 

• Consistent - produce coherent and cohesive game descriptions 

• Syntactically verifiable - a game description is checkable 

• Games describe participants, turn structure, artefacts and storage, rules, and interactions 

• A game described in DGDL is executed by a runtime 

• Players take care of their own strategy & decide what to say - DGDL runtime then 
determines whether that is legal within the confines of the current game



system : ( systemID '{' (game)+ '}' | game ) EOF;  
systemID : identifier; 
game : gameID '{'composition (rule)* (interaction)+'}'; 
gameID : identifier; 
composition : turnStructure (roleList)? participants (player)+ (store)*; 
turnStructure : '{''turns,' turnSize',' ordering (','maxTurns)?'}'; 
turnSize : 'magnitude:' (number | 'single' | 'multiple'); 
ordering : 'ordering:' (strict | liberal);  
maxTurns : 'maxturns:' (number | runTimeVar); 
runTimeVar : '$' identifier '$'; 
roleList : '{roles:' role(',' role)+ '}'; 
role : 'speaker' | 'listener' | identifier; 
participants : '{players,''min:' number',''max:' (number | 'undefined') '}'; 
player : '{player,''id:' (playerID | runTimeVar) (',' roleList)?'}'; 
playerID : identifier; 
store : '{store,''id:' storeType',''owner:'storeOwner','storeStructure','visibility'}'; 
storeType : identifier; 
storeOwner : playerID | '{'playerID(','playerID)+'}' | 'shared'; 
storeStructure: 'structure:'(set | queue | stack); 
visibility : 'visibility:'(publ | priv); 
rule : '{'ruleID' scope:'(initial | turnwise | movewise)','ruleBody'}'; 
ruleID : identifier; 
ruleBody : effects | conditional('&'conditional)*; 
effects : '{'effect('&'effect)*'}'; 
effect : effectID'('parameter(','parameter)*')'; 
effectID : identifier; 
parameter : identifier | contentSet | contentVar | 'hello'; 
commitment : content | locution | argument; 
content : '{'(contentSet|contentVar)(','contentSet|contentVar)*'}'; 
contentSet : upperChar; 
contentVar : lowerChar; 
locution : '<' moveID',' content'>'; 
moveID : identifier;

argument : '<'conclusion',' premises'>'; 
conclusion : contentVar; 
premises : '{'contentVar(','contentVar)*'}'; 
storeName : identifier; 
requirements : '{'condition ('&'condition)*'}' | '{'requirements('||'requirements)*'}'; 
condition : conditionID'('parameter(','parameter)*')'; 
conditionID : identifier; 
conditional : '{''if' requirements 'then' effects ('elseif'requirements'then'effects)*('else'effects)?'}'; 
interaction : '{'moveID',' content(','opener)?','rulebody'}'; 
opener : string; 
string : '"'(upperChar|lowerChar|number|symbol)+'"'; 
rulebody : (effects | conditional ('&'conditional)*); 
strict : 'strict'; 
liberal : 'liberal'; 
set : 'set'; 
queue : 'queue'; 
stack : 'stack'; 
publ : 'public'; 
priv : 'private'; 
initial : 'initial'; 
turnwise : 'turnwise'; 
movewise : 'movewise'; 
upperChar : UpperChar; 
lowerChar : LowerChar; 
symbol : Symbol; 
identifier : Identifier; 
number : Number; 
Identifier : UpperChar (UpperChar | LowerChar | Number)+; 
LowerChar : 'a'..'z' ; 
Number : '0'..'9' '0'..'9'*;  
Symbol :  ' ' | '?' | ',' | '.' ; 
UpperChar : 'A'..'Z' ; 
NEWLINE : ( ' ' | '\t' | '\r'| '\n' )+ {$channel=HIDDEN;};



A SIMPLE GAME DESCRIPTION
• Many games expressed in this kind of format 

• Many games left to reformulate into DGDL 

• Each new game is an opportunity -  

• What does this game codify that can’t be expressed in DGDL?

Simple{ 
    {turns,magnitude:single,ordering:strict} 
    {players,min:2,max:2} 
    {player,id:Player1} 
    {player,id:Player2} {store,id:CStore,owner:Player1,structure:set,visibility:public}       
    {store,id:CStore,owner:Player2,structure:set,visibility:public}  
    {Assert,{p},‘‘I assert that’’,{store(add, {p}, CStore, Speaker)}}  
} 



THE INSIGHT

• An entire game is a rigid and inflexible structure - you either play according to the rules of that game, 
or you aren’t playing that game. 

• However, the rules that make up a game can be separated out and rules from multiple games can be 
recombined to form new games 

• Video/Board game designers talk about “game mechanics” - shorthand for referring to how a 
specific aspect of the game play is codified in a given game but with the sense that mechanics are 
pluggable “if we could have the AI mechanic from X & the movement mechanic from Y then our new 
game will be excellent” 

• We named these game parts “fragments” 

• Perhaps new games can be specified based upon combining fragments in order to generate games 
that have specific attributes



DECONSTRUCTING GAMES INTO 
FRAGMENTS
• Not just pulling apart the rules of a game into constituent parts 

• But trying to encapsulate & abstract design concepts (mechanics) from a given source game so it can be 
reused 

• A fragment is a valid DGDL Left-Hand-Side (LHS) grammar rule 

• Starting anywhere within the grammar (not just at the start rule) 

• Extending through the grammar tree to valid terminal values 

• May be fully instantiated or partially abstracted 

• Collections of fragments constitute a “dialogical behaviour context” - Many games encode behaviours 
across multiple moves so multiple fragments might need to be collated and applied together to be 
meaningful



CONSTRUCTING GAMES FROM FRAGMENTS

• Assuming a library of suitably abstracted fragments…  This is what we envisage: 

• New games are developed in a specialised environment (could be GUI, TextUI, API, conversational interface) 

• The goal is generation of a novel DGDL description that can be tested and then executed on a runtime 

• Designers select the game(s) they want to construct (persuasion,deliberation, etc.) & a shift/embedding model if 
necessary 

• For each game an archetypal set of locutions is defined that conforms to each supported dialogue type; this is the 
base game for that dialogue type 

• Designer selects desirable properties to prohibit, permit, or prescribe - suitable fragments associated with those 
properties are then added to the DGDL description 

• Test the resulting description using desiderata and drosophila based approaches 

• Import tested DGDL description to a runtime and execute it



FUTURE WORK

• Building the library of fragments 

• Range of declarative parameters 

• Limits of automatic recombination 

• Automated verification & checking of generated games 

• Maintaining/Maximising modularity & interoperability with other 
argumentative formalisms and tools (ASPIC, AIF, Carneades, etc)



DISCUSSION

• Apologies for any ”hand waving” - this is preliminary work that we 
wanted to share with our community - there are some aspects that 
haven’t been finalised - there is a lot of work left to complete. 

• The key pieces to enables advances in dialogue game design, 
construction, testing, and deployment appear to exist. 

• This could lead to wider exploitation of  and better alignment 
between structured/formal approaches to dialogue and ML/data 
driven approaches leading to better conversational AI agents.
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