COMBINATORIAL DIALOGUE GAMES IN STRATEGIC ARGUMENTATION

Simon Wells Edinburgh Napier University, Scotland <u>s.wells@napier.ac.uk</u> <u>http://www.simonwells.org</u>

ECA, Lisbon, 11th June 2015

- Playing with dialectical games
- Enabling agents to engage in argumentative dialogues (games as interaction protocols)
 - Heterogeneous agent communities
 - Wide range of games available

 Need a mechanism to enable an agent to play a game (but identifying specific guidelines for every game doesn't feel right)

- Dialectical Games
- Unifying Dialectical Games
- Deciding what to say
- Combinatorial Dialogue Games

DIALECTICAL GAMES

- [hamblin, 1970]
 - Interaction protocols
 - Multiplayer (but usually 2)
 - Games (turns, moves, rules (tokens, boards))
 - Players take turns to make moves according to the rules of the game
 - Moves in the game correspond to utterances (speech act + locutional content)

- Dialogue Game Description Language [wells,2012]
- DSL for describing syntactically correct descriptions of the rules of dialogue games/dialectical games
- Underpinned by an EBNF grammar
- Supports interpretations of many extant games:
 - Hamblin, Mackenzie, Woods & Walton, Walton & Krabbe, Girle, Mcburney & Parsons, Bench-Capon, Lorenzen,...
- & newer games
 - MAgtALO protocol, Argument Blogging protocol,
- Supports: Shifts & Embeddings [wells, 2006]
- Supports: Schemes [wells, 2014]
- Tooling: verifier, Game engine, library of games

- Composition:
 - Game Components, e.g.
 - participants,
 - commitment stores,
 - &c.
- Rules:
 - Regulations that indirectly manipulate components
- Interactions:
 - Regulations for direct (by players) manipulation of components

Simple{ {turns,magnitude:single,ordering:strict} {players,min:2,max:2} {player,id:Player} {player,id:Player2} {store,id:CStore,owner:Player1} {store,id:CStore,owner:Player2} {Assert,{p},"| assert that",{store(add, {p}, CStore, Speaker), store(add, {p}, CStore, Listener)}}

DECIDING WHAT TO SAY

- Can define many different dialectical games (with varying features & characteristics)
- Many games are amenable to computational implementation and often to automated play by software agents
- Can identify the set of legal utterances....
 -but selecting the best utterance.... (ignoring optimal (& pessimal utterances for now))
 - ... depends upon goals, strategy, tactics, heuristics (& probably many other features)

STRATEGY, TACTICS, & HEURISTICS

Take a von Clausewitz style hierarchical approach:

Strategy - High-level approach to achieving a goal rendered in more general or abstract terms

Tactics - Specific coordinated movements, the "disposition of forces", aiming to practically achieve the strategic objectives

(in parallel) **Heuristics** - General rules or principles associated with good (or bad) play (can be related to norms for reasonableness)

STRATEGIES

- Start with dialogue type ([walton, 1995] style), e.g.
- Critical Discussion
 - Start from conflicting points of view
 - Overall goal: verbal resolution of the conflict
 - Individual goal: persuade others
- What constitutes a strategy in this context?
 - Formulated in terms of goal:
 - Defend own position,
 - Attack opponents position,
 - Get Socratic

TACTICS

- Select a dialectical game
- Generate a dialectical tree/sequences of locutions (speech act+content) for that game
- Identify winning sequences
- e.g. [yuan, 2007] assigns probabilities to locutions to indicate the "chance of winning" if you play that locution
- NB.Yuan also proposes a second strategy:
 - I. Generate all legal moves from current state
 - 2. Randomly select a move
- Others: Black, Rahwan,

HEURISTICS

- Dialectical Rules for explicit discussions [krabbe, 2001]:
 - DRI Comply with the rules
 - DR2 Try to win
- "Loose lips sink ships" [oren, 2006]
 - Don't say more than you have to
 - · Possibly related to "when in a hole stop digging"
- & many more (NB. Grice, Gilbert, Pragma-Dialectics,....)

SOME HITCHES

- Much of the current work deals either with;
 - specific games (much of the tactical work)
 - non-computational/human-level interaction (heuristics/ maxims)
- Might have many different games available (& shifts/ embeddings between them at run-time) - providing playbooks for each potential game seems like a lot of effort (& DGDL admits a large space of **possible** games)

COMBINATORIAL GAMES

- Branch of Mathematics concerned with games of pure strategy
- Perfect information, no chance
- Players take turns to move alternately until there are no moves left available to either or both players
- Conway defined a set of axioms for what constitutes a pure combinatorial game
 - But has proven useful to analyse play in games that violate conway's axioms, e.g. Backgammon

EDGE REMOVAL GAMES

Two players {red, blue} Graph is multi-coloured and connected to the ground

Take turns to remove edges of own colour, discarding sub-graphs no longer connected to ground Loser is first player who can no longer move Ignore locutions - Exploit commitment state only

- Gives edges direction (to indicate which way a node acts)
- Edge Addition/Removal game
 - Incurring commitment adds node(s)/edge(s) to the CDG graph
 - Retracting commitment will remove node(s)/ edge(s) from the CDG graph

- Combinatorial Games are generally studied as a single play,
 e.g. there is a single, static graph that forms the board upon which the game is played until a win/loss/draw state is reached
- However, incurring commitment will add nodes/edges to the graph - I don't know what my opponent knows, what their goals are, or what they will say so I don't know how the CDG graph will update after my opponent's turn
- Whatever our approach may have to re-evaluate the entire CDG graph frequently (possibly after each turn)
- NB. Can build hypothetical alternative CDG graphs (opponent models) based on knowledge of opponent (goals, knowledge)

WELL FORMED GAMES

- Additional constraints make formal dialectical games more 'tractable' when applied in a computational context
 - Opening phase is important defines the motivation/goal for the dialogue (initial position or thesis)
 - Termination conditions -
 - help agents decide when to stop
 - can be defined in terms of elements established during the opening phase (e.g. the player who retracts commitment from their initial thesis loses and the other player wins)
 - Commitment Assume either an explicit commitment model, or that commitments can be 'inferred' from the rules of the dialectical game (worst case scenario: fall back on essential *cumulativeness* [wells, 2006] and a reasonable generic commitment model)

THERE & BACK AGAIN

- · We threw away our locutions to work with pure commitment
- Need to reify our playbook in terms of locutions again (the things to say)
 - Search algorithm: Find a sequence of moves, having the requisite commitment effect, to bring the dialogue game state into alignment with the desired combinatorial game
 - Heuristics have a role here to further reduce the set of potential moves
 - Schemes play a role (Critical Questions can potentially restrict the set of available locutions related to the current state)

- A road ahead
- Mechanism for abstracting from specific dialectical games (if sufficiently well formed)
 - Ill-formed games may be amenable with certain assumptions
- Can work with current state: Based on current commitment state of the dialogue
 - Can simply extend the graph to include:
 - My knowledge thinks I may or may not commit to in future
 - My knowledge about opponents knowledge things not yet said in this dialogue but previously uttered by the opponent
 - Hypothetical/Inferred knowledge things that I may ascribe to my opponent based upon stereotype

THANKS FOR YOUR ATTENTION

- [hamblin, 1970] C. L. Hamblin (1970) 'Fallacies'', Methuen & Co. Ltd.
- [krabbe, 2001] E. C. W. Krabbe (2001) "Strategies in dialectic and rhetoric", OSSA'01
- [oren, 2006] N. Oren et al. (2006) "Strategies in dialectic and rhetoric" ARGMAS'06
- [yuan,2007] T.Yuan et al. (2007) "A Computer Game for Abstract Argumentation" CMNA'07
- [walton, 1995] D. Walton & E. C. W. Krabbe (1995) "Commitment in Dialogue" CUNY Press
- [wells, 2006] S. Wells & C. Reed (2006) 'Knowing When to Bargain' COMMA'06
- [wells, 2006] S. Wells (2006) ''Cumulativeness in Dialectical Games'' ISSA'06
- [wells, 2012] S. Wells & C. Reed (2012) "A Domain Specific Language for Describing Diverse Systems of Dialogue" Journal of Applied Logic 10(4)
- [wells, 2014] S. Wells (2014) "Supporting Argumentation Schemes in Argumentative Dialogue Games" Studies in Logic, Grammar, & Rhetoric 36(1)