
Using Code Generation to Build
a Platform for Developing &

Testing Dialogue Games

Tommy Yuan, Suresh Manandhar, & Simon Wells
Universities of {York|Edinburgh Napier}

CMNA 14 @ JURIX 2014, Krakow

Introduction
ProtOCL -

a prototype tool & workflow for describing & implementing dialogue games

(1) Describe game using industry standard tools

(2) Implement using code generation

(n) Build on generated code using API

Execution Platform -

API, Code, & Tools for using ProtOCL games

Exemplar of the process of integrating ProtOCL with a wider system

Motivation

Not always a big intersection between academic & industrial/
commercial tools

But, increasing intersection of academia & business

projects (particularly larger EU), spin-outs

Legitimate to investigate applied issues

NB. Also an increasing focus on argumentation in relation to HCI & UX

Specification Methods

Natural Language

Formal/logical Notation

Domain Specific Language (DSL)

Diagrammatic

+ various hybrids

4

Move Types

Assertions: The content of an assertion is a statement P, Q, etc. or the truth-functional compounds

of statements: “Not P”, “If P then Q”, “P and Q”.

Questions: The question of the statement P is “Is it the case that P?”

Challenges: The challenge of the statement P is “Why P?”

Withdrawals: The withdrawal of the statement P is “no commitment P”.

Resolution demands: The resolution demand of the statement P is “resolve whether P”.

Dialogue Rules

RFORM : Participants may make one of the permitted types of move in turn.

RREPSTAT : Mutual commitment can only be asserted when a question or challenge is responded.

RQUEST : The question P can be answered only by P, “Not P” or “no commitment P”.

RCHALL: “Why P?” has to be responded to by either a withdrawal of P, a statement that chal-

lenger accept, or a resolution demands of the previous commitments of the challenger which

immediately imply P.

RRESOLV E: A resolution demand can be made only in situations that the other party of the

dialogue has committed in an immediate inconsistent conjunction of statements, or he withdraws

or challenges an immediate consequent of previous commitments.

RRESOLUTION : A resolution demand has to be responded by either the withdrawal of the o↵ending

conjuncts or confirmation of the disputed consequent.

RLEGALCHALL: “Why P?” cannot be used unless P has been explicitly stated by the dialogue

partner.

Commitment Rules

Initial commitment, CR0: The initial commitment of each participant is null.

Withdrawals, CRW : After the withdrawal of P, the statement P is not included in the move

makers store.

Statements, CRS: After a statement P, unless the preceding event was a challenge, P is included

in the move makers store.

Defence, CRY S: After a statement P, if the preceding event was Why Q?, P and If P then Q are

included in the move makers store.

Challenges, CRY : A challenge of P results in P being removed from the store of the move maker

if it is there.

Termination Rules

1. The game will be ended when a participant accepts another participants view.

Fig. 1. The Rules of DE expressed using a natural language specification

Table 1. Set-theoretic Specification for Hamblin-type Games

Pre-Conditions - Commitment Store Contents

C2CS
n

Commitment C is currently in commitment store CS
C/2CS

n

Commitment C is not currently in commitment store CS

Post-Conditions - Alterations to Commitment Stores

CS
n+1 = CS

n

[{C} Commitment C is added to commitment store CS
CS

n+1 = CS
n

\ {C} Commitment C is removed from commitment store CS

4

Move Types

Assertions: The content of an assertion is a statement P, Q, etc. or the truth-functional compounds

of statements: “Not P”, “If P then Q”, “P and Q”.

Questions: The question of the statement P is “Is it the case that P?”

Challenges: The challenge of the statement P is “Why P?”

Withdrawals: The withdrawal of the statement P is “no commitment P”.

Resolution demands: The resolution demand of the statement P is “resolve whether P”.

Dialogue Rules

RFORM : Participants may make one of the permitted types of move in turn.

RREPSTAT : Mutual commitment can only be asserted when a question or challenge is responded.

RQUEST : The question P can be answered only by P, “Not P” or “no commitment P”.

RCHALL: “Why P?” has to be responded to by either a withdrawal of P, a statement that chal-

lenger accept, or a resolution demands of the previous commitments of the challenger which

immediately imply P.

RRESOLV E: A resolution demand can be made only in situations that the other party of the

dialogue has committed in an immediate inconsistent conjunction of statements, or he withdraws

or challenges an immediate consequent of previous commitments.

RRESOLUTION : A resolution demand has to be responded by either the withdrawal of the o↵ending

conjuncts or confirmation of the disputed consequent.

RLEGALCHALL: “Why P?” cannot be used unless P has been explicitly stated by the dialogue

partner.

Commitment Rules

Initial commitment, CR0: The initial commitment of each participant is null.

Withdrawals, CRW : After the withdrawal of P, the statement P is not included in the move

makers store.

Statements, CRS: After a statement P, unless the preceding event was a challenge, P is included

in the move makers store.

Defence, CRY S: After a statement P, if the preceding event was Why Q?, P and If P then Q are

included in the move makers store.

Challenges, CRY : A challenge of P results in P being removed from the store of the move maker

if it is there.

Termination Rules

1. The game will be ended when a participant accepts another participants view.

Fig. 1. The Rules of DE expressed using a natural language specification

Table 1. Set-theoretic Specification for Hamblin-type Games

Pre-Conditions - Commitment Store Contents

C2CS
n

Commitment C is currently in commitment store CS
C/2CS

n

Commitment C is not currently in commitment store CS

Post-Conditions - Alterations to Commitment Stores

CS
n+1 = CS

n

[{C} Commitment C is added to commitment store CS
CS

n+1 = CS
n

\ {C} Commitment C is removed from commitment store CS

5

Table 2. Set-theoretic Specification for Hamblin-type Games

Move Specifications (utilising pre- & post-conditions)

Statement(S
x

) Pre: Ø
Post: CP

n+1 = CP
n

[{S
x

} ^ CO
n+1 = CO

n

[{S
x

}
Withdrawal(S

x

) Pre: Ø
Post: CP

n+1 = CP
n

\ {S
x

}

Extended Backus-Naur Form (EBNF) grammar 3 to support the description of
syntactically correct and verifiable dialectical games. The language at the cur-
rent stage of development, however, needs software tool support particularly in
terms of user-facing (design) tools and execution “engines”. The following is an
example of a DGDL game description name “Simple”:

Simple{

{turns,magnitude:single,ordering:strict}

{players,min:2,max:2}

{player,id:Player1}

{player,id:Player2}

{store,id:CStore,owner:Player1}

{store,id:CStore,owner:Player2}

{Assert,{p},"I assert that",

{store(add, {p}, CStore, Speaker),store(add, {p}, CStore, Listener)}

}

}

In this example game a turn structure, two named players, and a commitment
store for each player are defined. A single assert move is then defined which incurs
commitment in both players commitment stores when it is played. This game is
for purely illustrative purposes and is indicative of the features and descriptive
character of DGDL descriptions.

There have been a variety of approaches to the diagrammatic description of
dialogue protocols. For example, in the Toulmin Dialogue Game (TDG) [33] a
state diagram is used to regulate the order of moves and assignment of roles
within a TDG dialogue. Finite State Machines (FSMs) have long been used
to define network protocols and have been widely used to model, analyse and
prototype distributed systems [34]. FSMs have also been used to describe conver-
sation policies in multi-agent systems [35]. UML sequence diagrams also provide
a way to diagrammatically depict dialogue protocols. For example, Agent UML
(AUML) [36] extends the unified modelling language (UML) to model intelligent
software agents and related agent-based systems. FIPA adopted this approach
to specify agent communication protocols such as the Subscribe Interaction Pro-
tocol 4 which enables an agent to subscribe to messages from another agent with
respect to a specific referenced object. The state machine and sequence diagram

3 https://github.com/siwells/DGDL/tree/master/grammar
4 http://www.fipa.org/specs/fipa00035/

5

Table 2. Set-theoretic Specification for Hamblin-type Games

Move Specifications (utilising pre- & post-conditions)

Statement(S
x

) Pre: Ø
Post: CP

n+1 = CP
n

[{S
x

} ^ CO
n+1 = CO

n

[{S
x

}
Withdrawal(S

x

) Pre: Ø
Post: CP

n+1 = CP
n

\ {S
x

}

Extended Backus-Naur Form (EBNF) grammar 3 to support the description of
syntactically correct and verifiable dialectical games. The language at the cur-
rent stage of development, however, needs software tool support particularly in
terms of user-facing (design) tools and execution “engines”. The following is an
example of a DGDL game description name “Simple”:

Simple{

{turns,magnitude:single,ordering:strict}

{players,min:2,max:2}

{player,id:Player1}

{player,id:Player2}

{store,id:CStore,owner:Player1}

{store,id:CStore,owner:Player2}

{Assert,{p},"I assert that",

{store(add, {p}, CStore, Speaker),store(add, {p}, CStore, Listener)}

}

}

In this example game a turn structure, two named players, and a commitment
store for each player are defined. A single assert move is then defined which incurs
commitment in both players commitment stores when it is played. This game is
for purely illustrative purposes and is indicative of the features and descriptive
character of DGDL descriptions.

There have been a variety of approaches to the diagrammatic description of
dialogue protocols. For example, in the Toulmin Dialogue Game (TDG) [33] a
state diagram is used to regulate the order of moves and assignment of roles
within a TDG dialogue. Finite State Machines (FSMs) have long been used
to define network protocols and have been widely used to model, analyse and
prototype distributed systems [34]. FSMs have also been used to describe conver-
sation policies in multi-agent systems [35]. UML sequence diagrams also provide
a way to diagrammatically depict dialogue protocols. For example, Agent UML
(AUML) [36] extends the unified modelling language (UML) to model intelligent
software agents and related agent-based systems. FIPA adopted this approach
to specify agent communication protocols such as the Subscribe Interaction Pro-
tocol 4 which enables an agent to subscribe to messages from another agent with
respect to a specific referenced object. The state machine and sequence diagram

3 https://github.com/siwells/DGDL/tree/master/grammar
4 http://www.fipa.org/specs/fipa00035/

JURIX 1998: Trevor J.M. Bench-Capon

10

Figure 3. State Transition Diagram for TDG

The conditions are expressed in terms of events brought about by moves in
the game: thus there is no appeal to intentional attitudes on the part of the
players, and hence the players need make no assumptions about the beliefs
and reasoning apparatus of the other players. We use two notions to de-
scribe these aspects of the game:
• The Claim Stack: This is a stack (in the standard computer data struc-

ture sense) of claims that have been made, either explicitly as claims, or
implicitly when data or warrants are supplied.

• The commitment stores: Each player will become committed to the truth
of certain propositions as the result of moves. The commitment stores,
maintained for each player other than the referee, record these commit-
ments. This is a standard notion found also in Mackenzie (1979) and Lod-
der (1998).

We can now specify each of the moves. In our specification P and O repre-
sent the roles currently occupied by the two players, proponent and oppo-
nent respectively; C, D and S are propositional variables.

Prop Opp Ref

Prop Prop Opp

Prop Opp Prop

Switch
focus

start claim

current
claim

ok

stop

withdraw

withdraw

ok

switch
roles

Presupposing

Supply
Presupposition

on account
of

withdraw

supply
backing

so

supply
warrant

rebuttal

rebut? okwhy
supply
data

Specification and Implementation of Toulmin Dialogue Game

11

4.1 Semantics of Moves in TDG

claim (C)
Description: P asserts that C
Preconditions: P has control of the dialogue
Postconditions: O has control of the dialogue

C is pushed onto the claim stack
P is committed to C

Completion Conditions: C is popped from the claim stack

why (C)
Description: O seeks data supporting C
Preconditions: O has control of the dialogue

C is top of claim stack
Postconditions: P has control of the dialogue
Completion Conditions: C is not top of claim stack

OK (C)
Description: O accepts C
Preconditions: O has control of the dialogue

C is top of claim stack
Postconditions: C is popped from the claim stack

O is committed to C
O is not committed to not C
If not C is on claim stack, it is removed
Referee has control of the dialogue

Completion Conditions: None

So (C)
Description: O requests the warrant for C
Preconditions: O has control of the dialogue

O is not committed to if D then C, for any D
for which he is not committed to -D
C is top of claim stack

Postconditions: P has control of the dialogue
Completion Conditions: C is not top of the claim stack

Presupposing (C)
Description: O requests the presupposition of C
Preconditions: O has control of the dialogue

If D then C is top of claim stack
Postconditions: P has control of the dialogue
Completion Conditions: If D then C is popped from the claim stack

On Account Of (C)
Description: O requests the backing for the warrant of C
Precondition: O has control of the dialogue

If D then C is top of claim stack
P has issued a supply warrant (C)

Postconditions: P has control of the dialogue
Completion Conditions: If D then C is popped from the claim stack.

ProtOCL

1. Describe a generic dialogue game UML object model

2. Describe specific rules for updating that model in OCL

Use standard UML tools to produce the OCL description

Compile against object model

Auto-generates a dialogue game framework with Java API

Overview: ProtOCL Lite

OCL
Annotation

UML Class
Diagram

annotates

Game
Engine

code generation

API Argumentation
Software Toolsuse

Overview: ProtOCL

DGDL
Description

OCL
Annotation

UML Class
Diagram

annotates

generates

Game
Engine

code generation

Game Transcript

exports

API Argumentation
Software Toolsuse

Argument.DTD

AIF2 ???

generates

generates

Object Model

7

F
ig
.2

.
A

gen
eric

m
o
d
el

for
d
ialogu

e
gam

es
ex
p
ressed

u
sin

g
th
e
U
M
L

class
d
iagram

n
otation

.
T
h
is
m
o
d
el
cap

tu
res

th
e
gen

eral
core

elem
en

ts
of

d
ialogu

e
gam

es
an

d
p
rov

id
es

th
e
b
asis

for
an

A
P
I
for

gen
erated

co
d
e.

OCL Fragments

7

description of DE as presented in 1 is used to demonstrate this. For example,
the DE move types rule can be specified as

--Player makes a legal move

context Player::makeMove():Move

--Permitted move types:

post: Set{’Assertion’, ’Question’, ’Challenge’, ’Resolve’, ’Withdrawal’}

->includes(result.getType())

The rule is specified as a post condition within the context of player make-
Move operation. context, post and result are OCL keywords and includes is an
OCL operation that applies to a set.

The DE dialogue rule RFORM can be specified as

--RFORM: Participants may make one of the permitted types of move in turn.

context Turn

inv: move->size()=1

context DialogueGame

inv: self.proponent.turn->forAll(getNumber()/2=1) and self.opponent.turn

->forAll(getNumber()/2=0)

The rule is specified jointly within the context of Turn and DialogueGame
class as two invariants: the first is that the set of moves associated with each turn
is exactly one and the second is that the turn numbers for the proponent are
odd numbers and for the opponent are even numbers given that the proponent
always starts a game. inv, self, and and are OCL keywords and size is an OCL
operation that applies to a set.

The DE commitment rule CR0 can be specified as

--Initial commitment, CR0: The initial commitment of each

participant is null.

context DialogueGame::start():String

post: proponent.store.content->isEmpty() and

opponent.store.content->isEmpty()

The rule is specified within the context of dialogue game start operation as
post conditions. isEmpty is an OCL operation that applies to a set.

The DE termination rule can be specified as

--Termination Rules: The game will be ended when a participant

accepts the other participant’s view.

context DialogueGame::end():String

pre:proponent.store.content->includes(thesis.getNegation()) or

opponent.store.content->includes(thesis)

--Playing

context DialogueGame::play():String

pre: proponent.store.content->excludes(thesis.getNegation())and

opponent.store.content->excludes(thesis)

The precondition for a dialogue game to end is that one partys store contains
the opponents thesis. Otherwise, the game is in the playing state.

Move Types
Assertions: The content of an assertion is a statement P, Q, etc. or the truth-functional
compounds of statements: “Not P”, “If P then Q”, “P and Q”.
Questions: The question of the statement P is “Is it the case that P?”
Challenges: The challenge of the statement P is “Why P?”
Withdrawals: The withdrawal of the statement P is “no commitment P”.
Resolution demands: The resolution demand of the statement P is “resolve whether P”.

Execution Platform

Rules+Agents+Knowledge = Platform

ProtOCL generated rules

Java Agents (extend abstract agent classes from the
platform) - should be an agent framework (e.g. JADE)

XML Knowledge-Bases (KBManager Graphical Tool)

Benefits
Flexible, Expressive, & Comprehensive:

Dialogue Game API

Object Model

Common/Popular Rules

Increased testability of game rules

Reduced likelihood of implementation errors (code gen)

Conclusions/Discussion

Approaches to specification - many too distant from user(dev)
experience

Identified existing, well supported tools within industry/
commercial software dev

Developed preliminary workflow for bringing together those
software tools with concepts from argumentation domain.

