
Automatically Detecting Fallacies in System Safety
Arguments

Tangming Yuan1, Suresh Manandhar2, Tim Kelly3, and Simon Wells4

1 University of York tommy.yuan@york.ac.uk
2 University of York suresh.manandhar@york.ac.uk

3 University of York tim.kelly@york.ac.uk
4 Edinburgh Napier University s.wells@napier.ac.uk

Abstract. Safety cases play a significant role in the development of safety-critical
systems. The key components in a safety case are safety arguments, that are desig-
nated to demonstrate that the system is acceptably safe. Inappropriate reasoning
with safety arguments could undermine a system’s safety claims which in turn
contribute to safety-related failures of the system. Currently, safety argument re-
views are conducted manually, require expensive expertise and are often labor
intensive. It would therefore be desirable if software can be employed to help
with the detection of flaws in the arguments. A prerequisite for this approach is
the need for a formal representation of safety arguments. This paper proposes a
predicate logic based representation of safety arguments and a method to detect
argument fallacies. It is anticipated that the work contributes to the field of the
safety case development as well as to the area of computational fallacies.

1 Introduction

As technology advances, microprocessors and the software that runs on them have
found their way into the hearts of products that many of us routinely use as part of our
daily lives. The presence of microprocessor-based electronic control units in devices
that people lives depend upon, such as the braking systems of cars and radiation therapy
machines in hospitals, justifies the importance of safety as a foremost requirement in
the engineering of these crucial systems. Safety-critical systems include any system
where failure could result in loss of life, significant property damage, or damage to
the environment. Safety-critical systems are deployed in a wide range of sectors and
industries, such as high-speed rail in the transport sector and nuclear power plants in
the energy sector.

These systems have high dependability requirements. That is, they are frequently sub-
jected to industrial, national, and international regulations that require compliance to
rules or procedures in their design, deployment, operation, and decommission process,
the attainment of one or more minimum standards in areas such as security, reliability,
availability, or safety. The construction of a safety case or functionally equivalent doc-
umentation is mandated in many standards used to guide the development of software
for safety-critical systems, such as the UK Ministry of Defence standard DS 00-55 [1]
and Part 3 of the International Electrotechnical Commission (IEC) standard 61508 [2].
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A safety case is defined by Bishop and Bloomfield [3] as “A documented body of evi-
dence that provides a convincing and valid argument that a system is adequately safe for
a given application in a given environment”. The approach is to support sophisticated
engineering arguments, for example, by assuring a safety argument within a safety case.
This approach aims to demonstrate clearly how the safety requirements are fulfilled by
the presented evidence, and thus derive confidence in the system’s dependability. A key
strength of this approach is to make the set of arguments explicit and available for intro-
spection. This in turn increases confidence that the form of argument and its conclusion
are both sound. Arguments are by their nature subjective, and their robustness is not
self-evident (e.g. confirmation bias [4]). To increase the soundness of the arguments,
a review element is necessary for the assurance of safety cases. A review normally in-
volves two parties: the proposing party, typically the system engineer, who asserts and
defends the safety case, and the assessing party, e.g. an independent safety assessor,
who represents the certification authority, and whose task is to scrutinise and attack the
arguments to uncover any vulnerability. The objective of a review is for the two parties
to form a mutual acceptance of their subjective positions [5]. A safety argument review
model [6] and tool [7] have been developed to facilitate this process. Despite the use-
fulness of the review framework, the quality of review arguments is not guaranteed as
this largely relies on the reviewers’ strategic wisdom and expertise. A complementary
approach, we argue, is to provide users with a software agent, which can assist the re-
viewers to detect argument flaws (e.g. conflict and circular arguments) on the fly so that
the argument quality can be improved.

This paper aims to investigate a suitable methods for the automatic detection of argu-
ment flaws and thus achieving additional assurance for the dependability of the system.
The rest of the paper is organized as follows. Section 2 discusses the current graphical
representation of safety arguments and the need of a formal representation at sentence
level. Section 3 proposes a predicate logic-based ontology via domain analysis of an ex-
isting safety case. Section 4 discusses how safety argument fallacies can be detected via
the ontology. Section 5 concludes the paper and gives pointers for our planned future
work in this area.

2 Safety Argument Representation

Graphical notations are often deployed to represent arguments in a more structured
and transparent manner as exemplified by, e.g. Buckingham Shum [8], Gordon and
Walton [9], and Reed an Rowe [10]. In the safety-critical domain, there are two estab-
lished, commonly used notations the Goal Structuring Notation (GSN) proposed by the
University of York [11, 12] and the Claims Argument Evidence notation proposed by
Adelard LLP [13]. The GSN has been adopted by an increasing number of companies
in safety-critical industries and government agencies, such as the London Underground
and the UK MoD, as a standard presentation scheme for arguments within safety cases
[14]. For example, 75% of UK military aircraft have a safety case with safety arguments
expressed in GSN [13]. This paper will use GSN to represent arguments graphically un-
less stated otherwise.
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The GSN uses standardised symbols to represent an argument:

– individual constituent elements (claims, evidence, and context)
– relationships between elements (e.g. how claims are supported by evidence).

In GSN, claims in an argument are shown as Goals (rectangles). They are often bro-
ken down into sub-goals further down a hierarchy. Alternatively they may be supported
by evidence, presented in the GSN as Solutions (circles), and for an argument to be
robust, all sub-goals must eventually be supported by solutions at the bottom. Strate-
gies adopted (especially when breaking down goals) are shown in parallelograms, and
they are related to argument schemes [15]. Contexts in which goals are stated appear
as bubbles resembling racetracks. If necessary, ovals are used in GSN to denote As-
sumptions and Justifications. They can be distinguished by an A or J at the lower
right of the symbol. Two types of links are used to connect the constituent elements. A
line with a solid arrowhead, representing a Supported by relation, declares an inferen-
tial or evidential relationship. Permitted connections are goal-to-goal, goal-to-strategy,
goal-to-solution, strategy-to-goal. A line with a hollow arrowhead represents an In-
context-of relation, that declares a contextual relationship. Permitted connections are
goal-to-context, goal-to-assumption, goal-to-justification, strategy-to-context, strategy-
to-assumption, and strategy-to-justification [11, 12].

An example use of the key components of the GSN is shown in Figure 1. The argu-
ment shows that in order to achieve the G1 both legs of evidence are collected and the
arguing strategy is from diverse forms of evidence. For complex systems with many
arguments, modular approaches [16] have been used to aid with argument abstraction
and composition. There has been substantial experience of using graphical GSN-based
arguments for a wide range of scales of safety argument (from single programmable
devices to whole aircraft safety cases).

The graphical representation shown above is more structured and transparent com-
pared to free text representation, and software can help with the conformance of GSN
syntax to ensure a valid safety argument is a connected diagraph with each path ending
in, at least, one item of evidence. However, the representation treats the content inside
each GSN node as black-box and as result any argument flaws related to the content of
the element cannot be detected by an automatic means. A formal representation for the
contents inside the nodes is necessary so as to make them machine processible. There
are at least three possible approaches to formal representation of a sentence that can be
found from the literature, namely, propositional logic, predicate logic and description
logic. A predicate-based approach is chosen in this paper due to its expressive power
than a proposition-based approach. We will cater for the description-based approach in
the future. A predicate-based representation of GSN elements will be discussed next.

3 Safety Argument Ontology

For a predicate-based approach to formal representation of GSN elements, it is nec-
essary to build an ontology that contains a set of constant symbols, function symbols
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Fig. 1. An example showing the use of key components of the Goal Structuring Notation.

and predicate symbols which form the vocabulary for the expressions of GSN nodes.
To derive the ontology vocabulary, domain analysis of some existing safety cases has
to be carried out. The preliminary study of the Europe Air Traffic Management (ATM)
System Safety Case [17] was chosen to serve the domain analysis in order to form the
first prototype of the ontology. The ATM study was conducted to evaluate the possibil-
ity of developing a whole airspace ATM system safety case for airspace belonging to
EURONCONTROL member states.

Our domain analysis focuses on the GSN elements and their related documentation in
the report. The report was read manually and the frequencies of relevant keywords were
counted with the aid of the document search function. As a result of the analysis, the
frequently used terms came into light and they are system, hazards, hardware, software,
integrity level, probability and process. The frequently used relations or interactions
among the terms are “meeting standards”, “lower than” and “greater than”. The actions
normally placed on the objects are reviewed, analyzed, eliminated and mitigated. The
subjective view is often safe. There are also patterns discovered when using these terms,
for example, when hazards are used, the actions such as eliminated and mitigated will
follow; when process is used, actions such as implemented and meet certain standard
will be used; when an item of evidence is used, terms like review and analysis will be
used. The analysis helps to build up the initial set of safety-argument vocabulary [18],
for example:

Constant Symbols :
System(Name), Standard(Name), Authority(Name), Hardware(Name),
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Software(Name),
Process(Name), Condition(Content), Adv(Content), Hazard(Name).

Function Symbols :
probabilityOf(Object), integrityOf(Object), hardwareOf(Object, namedAs),
hazardOf(Object, namedAs), softwareOf(Object, namedAs), processOf(Object, namedAs),
analysisOf(Software), reviewOf(Software)

Predicate Symbols :
meetStandard(Object,Standard), greaterThan(Object1, Object2),
lowerThan(Object1,Object2), hasBeenImplemeted(Object, adv), isSafe(Object, Con-
dition), hasBeenReviewed(Object, adv.), isAlike(Object1, Object2).

The atomic level is the constant symbols. Constant symbols denote the entities or
objects in the domain. Function symbols denote functions from tuples of objects to
objects. In system safety argument, it is essential to represent the objects inside the
sentence, such as “hardware of system x”. In order to achieve this, function symbols
are used to solve this problem, hardwareOf(system(x)) will present “hardware of system
x”. Function symbols will serve to identify the properties of certain objects. Based on
the nature of the properties, they can be further divided into two categories: countable
and uncountable. For the countable properties, each property needs to be distinguished
and it is necessary to do so, and this can be formulated as: symbols (object, name).
For example, hazardOf(system(x), h1) can be read as “hardware of system x named
as h1”. So the “name” parameter inside the functions symbol will help to distinguish
the countable properties. On the other hand uncountable properties are not necessarily
distinguished, for example, integrityOf(system(x)). Comparing to predicate symbols,
function symbols donate objects instead of a complete sentence. We use content to
distinguish function symbols since a function symbol is normally an argument inside a
predicate symbol.

Predicate symbols are used to represent a sentence. A sentence normally provides an
action on the object or a description of an object. Based on the nature of the sentence,
the predicate symbols can be divided into two categories. The actions can be formulated
as symbol (object, adv.), such as eliminated (hazardOf(system(x)), completely), imple-
mented(processOf(system(x)), safely). There are other actions such as meeting certain
standard and comparison objects (e.g. lower than, higher than). These predicates can be
formed as symbols (object 1, object 2), such as meetingStandard(processOf(system(x),
standard(y)) can be translated as “the process of system x meet the standard y”, and
lowerThan(probabilityOf(hadzardOf(x), probabilityOf(standardOf(x0) ) means that the
probability of hazard x happens is lower than the probability required by standard x. It is
also essential to present the adjective words that describe the object, such as safe. How-
ever the adjective words to describe the object can only be valid in some conditions.
In order to include the conditions in the predicate, the adjective predicate symbols can
be formulated as: symbol (object, condition). For example: isSafe(system(x), Condi-
tion(hazards are avoided)) means that system x is safe when hazards are avoided.



6

4 Automatic Detection of Safety Argument Fallacies

A fallacy is defined by Damer [19] as a mistake in an argument that violates one or
more of the five criteria of a good argument: i) A well-formed structure, ii) Premises
that are relevant to the truth of the conclusion, iii) Premises that are acceptable to a
reasonable person, iv) Premises that together constitute sufficient grounds for the truth
of the conclusion, v) Premises that provide an effective rebuttal to all anticipated criti-
cisms of the argument. In safety arguments, fallacies exist in different forms. Greenwell
et al. [20] studied a number of safety cases, such as EUR Reduced Vertical Separation
Mininums (RVSM) and EUR Whole Airspace Preliminary and derived a number of
fallacies in safety cases organized into three categories namely, relevance, acceptability
and sufficiency fallacies. This paper examines a subset of these argument fallacies and
how they can be detected in an automatic means via the predicate-based representation
as outlined in section 3 above. The fallacies e.g. appeal to improper authority, fallacious
use of language, faulty analogy, circular argument, fallacious composition and confu-
sion of necessary & sufficient condition, are discussed in turn below and each followed
by means to detect them.

4.1 Appeal to improper authority

The fallacy of appeal to improper authority is a member of relevance fallacy family
where arguments that violate the relevance criterion of a good argument. They employ
irrelevant premises or make appeals to irrelevant factors to draw a conclusion. The
fallacy of appeal to improper authority attempts to support a claim by appealing to the
judgment of an authority which is actually not an authority in the field and likely to be
biased [19]. The authorities cited in safety arguments could be individuals, committees,
standard documents, “best practices”, and system pedigree [20]. The fallacies occur
mostly in the form of transferring one authority’s competence into another field in which
its competence is not valid. For example, an entertainer or athlete is appealed as an
authority on marriage and family.

To automatically detect this fallacy, constant symbols such as standard() and Author-
ity() should be used. A database can be built so that each authority can be checked
against their field of expertise. For example, meetStandard(processOf(system(x)), stan-
dard(y)) => safe(system(x)). The standard(y) will be checked against the database to
verify whether it is the correct one being applied.

4.2 Fallacious use of language

The fallacy of the use of language occurs when an argument violates the acceptability
criterion for a good argument. There are five types of unacceptable premises: i) A claim
that contradicts credible evidence, a well-established claim, or a legitimated authority,
ii) A claim that is inconsistent with ones own experience or observations, iii) A ques-
tionable claim that is not adequately defended in the context of the argument or not
capable of being adequately defended by evidence in some other accessible source, iv)
A claim that is self-contradictory or linguistically confusing, v) A claim that is based on
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another unstated but highly questionable assumption [19]. Fallacious use of language
typically happens due to a lack of clarity in the meaning of a key word or phrase used
in the premise. An ambiguous word, phrase, or sentence is the one that has more than
one meaning. The inferential relationship between claims in argument should clearly
define the exact meaning being used. A typical example is to describe the desirable
system properties by using expressions such as safety, reliability and dependability in-
terchangeably.

To detect this fallacy automatically, it is essential to know common misleading words,
or phases. Since a sentence is represented by predicate symbols which are pre-defined,
the fallacious use of language can be reduced significantly. For example: isSafe(), is-
Reliable(), isDependent() will have different meaning in safety argument, and they are
treated differently in the logical representation to avoid any confusion with their mean-
ings.

4.3 Faulty Analogy

Faulty analogy is a type of acceptability fallacy. It assumes that because two things
are alike in one or more respect, they are necessarily alike in some other important
respect. This fallacy fails to distinguish the insignificance of their similarities and the
significance of their dissimilarities [19]. In safety argument cases it could be that, using
the argument for the development of the previous system to support current system
without stating the differences between these two systems. There is a typical example,
the Ariane 5 accident in 1996 could be the result from a faulty analogy within the
rockets safety cases [21].

To enable a machine to detect such a fallacy, the predicate symbol isAlike() and is-
Minor() can be used. For example, isAlike(system(x), system(y)) ∧ isSafe(system(y))
=> isSafe(system(x)) can be read as because system x and system y are alike, sys-
tem y is safe, so system x is safe. When this situation happens, it is easy to identity
the missing elements such as the justification on the difference. The expression “isA-
like(system(x), system(y)) ∧ isSafe(system(y)) ∧ isMinor(differenceOf(system(x), sys-
tem(y)) =>isSafe(system(x))” seems to be more convincing than the one without such
a justification.

4.4 Circular Argument

Circular argument is a type of acceptability fallacy that involves either explicitly or
implicitly asserting in the premise of the argument is asserted in the conclusion of that
argument [19]. Instead of providing supporting evidence, it simply brings up the con-
clusion as its evidence. In the standard form, it looks like: since A (premise), therefore,
A (conclusion). And it also can be implicitly assuming the conclusion is true. For ex-
ample, when people argue God exists because he does not want to go to the hell. By
arguing that, he already assumes that God exists, which is the conclusion he want to
draw. Sometimes it is hard to detect this kind of fallacy, since different words or differ-
ent forms may be used in the premises or conclusion. The complexity of an argument
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also causes the difficulty to detect the kind of fallacy because the conclusion may be
drawn far away after the premises.

To automatically detect such a fallacy in safety arguments, it is necessary to find
a similar argument that is in the circle, for example: isSafe(system(x)) => meetStan-
dard(processOf(System(x)),Standard(y)), meetStandard(processOf(System(x)), Standard(y))
=> isSafe(System(x)). Based on the predicate symbols used in the argument, it is feasi-
ble to trace the argument and identify similar arguments used as supporting arguments.

4.5 Fallacy of Composition

Fallacy of composition is a type of acceptability fallacy that assumes that every part
is true therefore the whole is true, without taking the relations between the parts into
account [19]. Typical example could be a football team with excellent players may not
be a good team, because when gathering excellent players together, their skills may
be compromised to team work. In safety cases, the example could be argument for the
whole system is safe by supporting sub-system A, B, C are safe, which ignores the
interactions between these sub-systems [20].

The fallacy can be detected with aid of the predicate-based language. With such
a representation, The pattern of argument from system decomposition [15], e.g. is-
Safe(hardwareOf(System(x), h1)) ∧ isSafe(hardwareOf(system(x), h2)) =>
isSafe(system(x)) can be identified. Upon the identification of the argument pattern, the
predicate with regard to the component interaction can be searched for. As an example,
the argument of isSafe(hardwareOf(system(x), h1)) ∧ isSafe(hardwareOf(system(x),
h2)) ∧ isNone(interactionOf(hardwareOf(system(x))) => isSafe(system(x)) is a proper
argument while missing the isNone will result in fallacy of composition.

4.6 Confusion of Necessary & Sufficient Conditions

This fallacy occurs when there is insufficient evidence is provided, e.g. no or little evi-
dence, biased or week evidence, or omitting crucial types of evidence. When arguing for
or against a position, relevant and acceptable reasons should be provided, together with
justification of the sufficiency in number or weight to the acceptance of the conclusion.

Necessary condition of an event is a condition that must be present in order for an event
to happen. Sufficient condition will trigger the occurrence of an event. In safety cases,
a typical example argument is “hazards have been mitigated” with evidence showing
the case that hazards have been mitigated. However, in order to mitigate hazards, the
sufficient condition is to identify all the hazards. To better support the argument, the
identification process should be included [15]. In the argument structure, it is often valid
to say isSafe(System(x)) => isSafe(System(x), condition1), while it is invalid to say
isSafe(system(x), condition1) => isSafe(system(x)) due to insufficient conditions for
the whole system to be safe. The fallacy of distinction without a difference is opposite
to faulty analogy and fallacy of division is the opposite of fallacy of composition. The
means to detect these fallacies are similar. There are also other safety argument fallacies
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that are categorized in [20] but not examined in this paper, e.g. red herring, drawing the
wrong conclusion, using the wrong reasons, false dichotomy, pseudo-precision, hasty
inductive generalization, arguing from ignorance, omission of key evidence, ignoring
the counter-evidence and gambler’s fallacy. We are going to cater for these in the future
in terms of the appropriate representations in order to detect them by an automatic
means

5 Conclusions &Future Work

The work presented in this paper is but one stage within a wider program of research
on analysis of existing safety cases in order to enrich the ontology vocabulary and au-
tomated analysis of safety arguments. Additionally, there are opportunities within other
domains, such as security policy documents which utilise similar constrained and for-
malised domain specific languages to represent clauses within the policies. We also
plan to incorporate the safety argument ontology into current safety argument software
tools such as that from [7]. Additionally, a dialectical model of interaction between the
engineer and a safety-system agent could support the elicitation of higher quality safety
cases in the first instance. For example, such a dialectical approach could build exist-
ing educational dialogue approaches [22], existing knowledge elicitation interactional
approaches [23] or else involve the development and description of a wholly new proto-
col using appropriate technologies [24]. A similar dialectical model, but using a mixed
initiative approach could support the assessor in thorougly exploring potential fallacies,
and other deficiencies, within a case. However such approaches are reserved, at present,
for future work.

This paper reports our work in adopting a predicate-based approach to represent safety
arguments in order to facilitate the automatic detection of fallacies. Particularly, we have
conducted a domain analysis of an existing safety case and the analysis helps the gener-
ation of a set of ontology vocabularies. Via the domain ontology, methods for machine
detection of some outstanding argument fallacies have been proposed. The fallacies
cannot be detected without such a formal representation. In terms of the contribution
of the paper, the proposed safety argument representation goes further than the current
graphical representation, e.g. GSN, and the new representation makes the GSN nodes
from black-boxes to white-boxes and thus being machine processible. The work will
contribute to both the field of the safety case development and the area of computa-
tional fallacies.
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