
Using Code Generation to Build a
Platform for Developing and Testing

Dialogue Games

Tangming YUAN a,1, Suresh MANANDHAR a and Simon WELLS b

a Department of Computer Science, University of York
b School of Computing, Edinburgh Napier University

Abstract. Despite increasing research into their use as a vehicle for Human-
Computer Dialogue and Inter-Agent Communication, Dialogue Games have not
seen good uptake in industry. One of the reasons for this is the lack of method-
ologies and tooling for the development, evaluation, and exploitation of such sys-
tems. In this paper we build on the ProtOCL methodology to demonstrate the con-
struction of a complete computational dialogue platform which supports the use of
different dialogue games.

Keywords. Dialogue Games, Intelligent Agents, Dialogue Game Execution
Platforms, Code Generation, Agent Dialogue

Introduction

Dialogue games (DG) are becoming increasingly popular tools for Human Computer Di-
alogue and Agent communication [3,6,5,17]. A number of computerized dialogue game
systems have been developed. For example, [7] introduces a platform called MAgtALO
that supports online debate using simple dialogue games. [1] presents a game using the
PARMA protocol. [8] presents the “IACAS” system and [14] describes a number of de-
bating systems for Human-Computer and Computer-Computer games. [9] performs a
similar task but with a focus on comparison and evaluation between dialogue game rules.

However, whilst there is an increasing body of theoretical underpinning that demon-
strates the value and utility of dialogue games, and also a range of novel implementations
within specific problem domains, there remain very few methods and tools to support
deployment of dialogue game based solutions within new problem domains. A drawback
of most of these systems is the hard-wired nature of the protocol. Each system imple-
ments a particular game, and in some cases, where the rules are describe in natural lan-
guage and are imprecise, a particular interpretation of a game. Hard-wiring makes reuse
difficult, for example the DE implementation in one system cannot be easily saved and
reused by another system. To address this, considerable research effort has therefore been
devoted in the past decade in order to develop a generic dialogue game platform for use

1Corresponding Author: Department of Computer Science Deramore Lane, University of York, Heslington,
York, YO10 5GH, UK ; E-mail: tommy.yuan@york.ac.uk



by dialogue game researchers and developers to construct and test their dialogue games
and strategies in a convenient way. For example, [12] introduces the Dialogue Game De-
scription Language (DGDL) and it’s grammar for describing syntactically correct dia-
logue games and in [10] a number of games are collected which can all be described
using DGDL. However there are currently no freely available run-times that will execute
games described using DGDL.

In the remainder of this paper we describe a method and tools for developing exe-
cutable computational dialectical systems. Section 1 introduces the architecture and the
major functionalities of the platform. Section 2 discusses the ProtOCL method that we
have developed to specify dialogue games and generate dialogue game component. Sec-
tion 3 discusses individual agent design and outlines the development of a knowledge
base creator that can be used to visually create argument knowledge base for agents.
Finally, section 4 indicates directions for future work and concludes the paper.

1. The Dialogue Game Platform Overview

The aim of this platform is to demonstrate the integration of dialogue games, specified
using ProtOCL, into a complete platform which can be used to engage in dialogue and to
explore the efficacy of different game play techniques and strategies. The user interface
is a conventional GUI design, illustrated in Figure 1. When a user initiates a new game,
they can set parameters, for example, choosing game rules to play by, selecting agents
and knowledge bases for the dialogue. Game rules and agents are implemented in Java,
and knowledge bases are external XML files. In our example, the system has two agents,
namely ‘student’ and ‘agent1’, who conduct a debate on the topic of capital punishment
(CP). The dialogue is proceeds with one agent starting the dialogue by posing the ques-
tion of whether CP is acceptable and the players assume opposing positions. The game
proceeds with the players selecting from the available move types and then from the list
of allowed propositional content. Of particular interest is the support for selecting the
game to play, and that the supported games can be expanded by defining and loading new
rules. Rules are defined using UML and OCL. Code is automatically generated from the
definitions and incorporated into the dialogue game platform. In the following sections
we shall review the ProtOCL method, the design of the agents used in the platform, and
the knowledge base creation tool which provides the locutional content used in playing
games on the platform.

2. The ProtOCL method

ProtOCL is an approach to specifying and implementing dialogue games using the Ob-
ject Constraint Language (OCL), which has strong tool support and broad industry ac-
ceptance, to define game rules within the context of a wider Unified Modelling Lan-
guage (UML) description of a generic, high-level dialogue game [19]. The UML model
describes the generic core elements of dialogue games and provides the archetype for
an API for generated code as well as a core game engine. Specific games are described
in OCL and stub classes are generated which can interact with the engine via the API.
End-developers must implement these stubs with game specific code to get a complete



Figure 1. The dialogue game platform showing an ongoing human-agent dialogue in the CP domain.

executable implementation. So long as the class model API, generated from the UML,
remains unchanged, different games can be defined using industry standard OCL tools,
and implemented. By taking this approach a broad range of dialogue games, similar in
basic form to [4] can be specified by using the UML/OCL language.

3. Agents & their Knowledge

An increasingly important topic in dialectical game research is concerned with how
agents can play games; the strategies and tactics that can lead to effective goal-oriented
play. Therefore, having constructed a system, ProtOCL that is used to define an exe-
cutable dialogue game platform, we now turn to the topic of constructing agents that can
play the games offered by that platform. Classes that define abstract agents that can en-
gage with a ProtOCL game are a part of the platform. These classes can be extended to
provide specific game-related functionality and a number of exemplar agents have been
developed that can play specific games, e.g. DC, DE, etc. These agents use a three level
decision strategy and adopt the heuristics developed in [15,16,17]. One of our aims is
to enable different strategies to be developed and for their effectiveness to be tested. To
achieve this, one approach might be to develop an arguing agent competition [18,11] in
which entrants provide agents which compete against each other to achieve certain goals
in a dialogue. The system, and implemented agents are provided with an XML-based
knowledge base, constructed using the KBManager graphical tool [13,2] showing Figure
2, which is a part of the ProtOCL platform. Parsers for this format are provided which
can be used to load a KB into an agent or to dump the KB into an alternative format,
such as AML of AIF, for further processing.



Figure 2. Screenshot of the Argument Knowledge Creator being used to create a knowledge base within the
medical domain.

4. Conclusions & Future Work

Together, the ProtOCL platform, a set of implemented agents, and a knowledge base
constitute a basic extensible system for playing dialogue games. A key element of this
approach is the development and implementation of a core dialogue game API. By con-
forming to the API, individual new components and techniques can be implemented and
deployed which work with the existing components. The platform can be extended by
implementing and loading new games, new agents, and new knowledge bases. This en-
ables three factors, the game, the strategies, and the knowledge to be varied whilst ex-
ploring and evaluating dialectical games.

One area of future work is to connect the current approach, using UML and OCL
to specify and generate executable dialogue games using industry-standard, human-
oriented, graphical tools, with existing work on dialogue game specification using the
Dialogue Game Description Language (DGDL) which supports formal definition and
syntactic verification. This suggests an avenue toward lossless, bi-directional movement
between specification and execution platforms that aim for increased industrial uptake
and research systems that seek to gain increased insight into both ideal, and real-world
dialogical interaction. In section 2 we identify that this approach supports a range of
games similar to DC, however the shape and extent of the space of possible games that
can be described using this approach is not clear and requires further investigation.

To conclude, this paper has reported on our progress developing methods and tools
for the rapid construction, deployment and testing of computational dialectical systems.
In particular, we have developed a technology called ProtOCL which uses code genera-
tion to produce dialogue games which have been specified using UML/OCL. The over-
all architecture of the dialogue game platform is component-based so that the individual



components of the system can be developed individually and then assembled together
using the dialogue game platform. The paper provides sufficient design rationales and
implementation details for reuse and reproduction. It is anticipated that this work con-
tributes significantly to the development of computerised dialectical systems.

References

[1] K. Atkinson. What Should We Do?: Computational Representation of Persuasive Argument in Practical
Reasoning. PhD thesis, University of Liverpool, 2005.

[2] S. Bartlett, H. Wang, A. Zolotas, E. Panah, and V. Menon. Intelligent debating system, MSc software
engineering team project report, Department of Computer Science, University of York, 2011.

[3] T. J. M. Bench-Capon and P. E. Dunne. Argumentation in artificial intelligence. Artificial Intelligence,
171(10–15):619–641, 2007.

[4] J. D. Mackenzie. Question begging in non-cumulative systems. Journal Of Philosophical Logic, 8:117–
133, 1979.

[5] I. Rahwan and P. McBurney. Argumentation technology: introduction to the special issue. IEEE Intelli-
gent Systems, 22(6):21–23, 2007.

[6] C. Reed and F. Grasso. Recent advances in computational models of argument. International Journal
of Intelligent Systems, 22(1):1–15, 2007.

[7] C. Reed and S. Wells. Using dialogical argument as an interface to complex debates. IEEE Intelligent
Systems Journal: Special Issue on Argumentation Technology, 22(6):60–65, 2007.

[8] G. A. W. Vreeswijk. Iacas: an implementation of Chisholm’s principles of knowledge. In In Proceedings
of the 2nd Dutch/German Workshop on Non-monotonic Reasoning, Utrecht, page 225234, 1995.

[9] S. Wells. Formal Dialectical Games in Multiagent Argumentation. PhD thesis, University of Dundee,
2007.

[10] S. Wells. Collation of formal dialectical games from the literature. Technical Report UOD-SOC-2012-
001, University of Dundee, 2012.

[11] S. Wells and C. Reed. Towards an arguing agents competition: Architectural considerations. In Pro-
ceedings of the 8th International Workshop on Computational Models of Natural Argument (CMNA8),
2008.

[12] S. Wells and C. Reed. A domain specific language for describing diverse systems of dialogue. Journal
of Applied Logic, 10(4):309–329, 2012.

[13] Y. Ye. Argument knowledge base creator for computerized debating systems, MSc thesis, Department
of Computer Science, University of York, 2010.

[14] T. Yuan. Human Computer Debate, A Computational Dialectics Approach. PhD thesis, Leeds
Metropolitan University, 2004.

[15] T. Yuan, D. Moore, and A. Grierson. A human computer debating system and its dialogue strategies.
International Journal of Intelligent Systems, 22(1):133–156, 2007.

[16] T. Yuan, D. Moore, and A. Grierson. A human-computer dialogue system for educational debate, a com-
putational dialectics approach. International Journal of Artificial Intelligence in Education, 18(1):3–26,
2008.

[17] T. Yuan, D. Moore, C. Reed, A. Ravenscroft, and N. Maudet. Informal logic dialogue games in human-
computer dialogue. Knowledge Engineering Review, 26(3):159–174, 2011.

[18] T. Yuan, J. Schulze, J. Devereux, and C. Reed. Towards an arguing agents competition: Building on
argumento. In Proceedings of the 8th International Workshop on Computational Models of Natural
Argument (CMNA8), 2008.

[19] T. Yuan and S. Wells. Protocl: Specifying dialogue games using uml and ocl. In F. Grasso, N. Green,
and C. Reed, editors, Thirteenth International Workshop on Computational Models of Natural Argument
(CMNA13), pages 74–85, 2013.


