
ProtOCL: Specifying dialogue games using UML
and OCL

Tangming Yuan1 and Simon Wells2

1 University of York tommy.yuan@york.ac.uk
2 University of Aberdeen simon.wells@abdn.ac.uk

Abstract. Dialogue games are becoming increasingly popular tools for
Human-Computer Dialogue and Agent Communication. However, whilst
there is an increasing body of theoretical underpinning that demonstrates
the value and utility of dialogue games, and also a range of novel imple-
mentations within specific problem domains, there remain very few tools
to support the deployment of dialogue games based solutions within new
problem domains. This paper introduces a new approach, called Pro-
tOCL, to the specification of dialogue games. This approach adopts Uni-
fied Modelling Language (UML) and the Object Constraint Language
(OCL) and enables the rapid movement from specification to deploy-
ment and execution. The dialogue game, DE, is used as an exemplar
and is described using OCL to yield DE-OCL. Code generation is subse-
quently used to move from the DE-OCL description to executable code.
This approach goes beyond existing description languages and their sup-
porting tools by (1) using a description language that is familiar to a far
larger user group, and, (2) enables code-generation using languages and
technologies that are current industry standards.

1 Introduction

Dialectics is a branch of philosophy that seeks to build models for “fair and
reasonable” dialogue [1]. A common approach within dialectics is to construct
dialogue games such as those of Hamblin [2], Walton and Krabbe [1], Walton
[3], and Mackenzie [4]. A dialogue game can be seen as a prescriptive set of
rules, regulating the participants as they make moves in a dialogue. These rules
legislate as to the permissible sequences of moves, and also as to the effect of
moves on the participants’ “commitment stores”, a record of the players positions
with respect to the statements made thus far. Such dialogue games have received
much recent interest from people working in Human Computer Dialogue and in
Artificial Intelligence, for example Bench-Capon and Dunne [5], Reed and Grasso
[6], Rahwan and McBurney [7], and Yuan et al.[8].

A number of computerised dialectical systems have been designed. Grasso
et al. [9] for example, outline a system designed to change the attitudes of its
users in the domain of health promotion. Vreeswijk [10] has designed “IACAS”,
an interactive argumentation system enabling disputes between a user and the
computer. Yuan et al. [11] have applied the argument game from Wooldridge



2

[12] and the abstract argumentation system of Dung [13] to the construction of a
computational argument game called “Argumento”. Argumento enables human-
agent, agent-agent and human-agent to exchange both abstract and concrete
arguments [14] and has been adopted as the core for an arguing agents compe-
tition [15, 16]. Ravenscroft and Pilkington [17] used a dialogue game framework
to facilitate a “structured and constrained dialectic” which in turn aided the
student in enhancing explanatory domain models in ways that led to concep-
tual development concerning the physics of motion. The framework has been
implemented in a prototype system “CoLLeGE” (Computer based Lab for Lan-
guage Games in Education). Empirical studies have shown the effectiveness of
the dialogue game framework [18, 19]. Mackenzies dialectical system named ‘DC’
[20] has been used as the basis for developing a further system named ‘DE’ [21]
which has been used as the underlying model for a human-computer debating
system [22–24]. Recently, dialogue games have also been used to structure inter-
action between humans and intelligent agents in mixed initiative environment
as demonstrated in the MultiAgent Argument Logic and Opinion (MAgtALO)
systems [25] and between intelligent agents within a multi-agent system [26].
The systems we have outlined above face a distinct formal representation prob-
lem that is the representation of the structure of the protocol that governs the
dialogue game as it unfolds [8]. We may, for example, build a system that is to
use the DE model to argue about capital punishment, but how are we to store
the rules of DE?

To date, computational dialectic systems have approached the problems by
expressing dialogue models informally using plain or structured English and then
hard-wiring them into the program structure by the developer of the system.
Hard-wiring means that the game rules cannot be easily modified unless re-coded
and the entire system rebuilt. This makes reuse impossible as the game rules
cannot be formally specified, saved and subsequently interfaced by other systems.
A formal means of specifying dialogue games is therefore needed. In this paper
we report on an approach to the specification of dialogue games that we have
named ProtOCL. This approaches uses the Unified Modelling Language (UML)
to describe a generic dialogue game consisting of the common core elements
found across a range of dialogue games, and the Object Constraint Language
(OCL) to express specific rules as UML annotations that enable the generic game
to be made specific to a particular dialogue game.

The remainder of this paper is organised as follows. Section 2 provides litera-
ture reviews of different means of specifying agent dialogue protocols. Section 3
argues and demonstrates the case of using of UML and OCL as an approach to
specify dialogue games. Section 4 discusses how a dialogue game framework can
be generated and interfaced by the dialogue game engine and agents. Section 5
concludes the paper and point out our intended future work.



3

2 Methods for specifying dialogue protocols

This section reviews some of the methods from the literature that have been
used to specify dialogue protocols. These generally fall into the following cate-
gories: (i) natural language, (ii) formal logical notation, (iii) diagrammatic, and,
(iv) domain specific language (DSL).

Natural languages descriptions, such as the game DE, a simplified version
of which is illustrated in Fig. 1, are generally well organised but fail to lend
themselves to either immediate execution or automated evaluation. In a nat-
ural language description, the rules of the game are generally grouped into a
limited number of categories that define the types of available move (locution
rules), how the moves interact with each other (structural rules), how playing
the moves affect the commitments of the players (commitment rules), and the
circumstances under which the game comes to an end (termination rules). A
strength of the natural language approach is that the resulting descriptions are
expressive and are, to a degree, easily understood by developers. However nat-
ural language descriptions of game rules can lead to problems with ambiguity.
This aspect is compounded when the aim is for computational use of the game as
natural language specifications are generally not machine-readable so automated
testing, deployment, and execution become a difficult problem.

Formal specifications use notations from mathematical or formal logics to
represent the semantics of dialogue rules in a precise way. Notable examples
of this approach are to be found in [27], [28] [29] and [30]. Recent work has at-
tempted to create more generic description formats that retain the rigourousness
of the formal approach whilst providing a range of descriptive features that are
closer to the problem domain, for example in [31], the typical moves of Hamblin-
type dialectical games are characterised in terms of a limited number of states
and updates. The rules of a complete game are then expressed by assembling
collections of moves in terms of pre- and post-conditions using a set-theoretic
formal notation. Table 1 illustrates a subset of commitment store states and
updates from this kind of approach. Table 2 uses the expressions from Table
1 to complete the pre- and post-conditions for the statement and withdrawal
moves of Hamblin’s game, H. Whilst this approach improves the specificity of
the rules and leads to a reduced chance for ambiguity, this approach is difficult
to communicate to developers who do not possess the necessary mathematical
background required to understand the notation (cf. Sommerville, 2011).

A Domain specific language (DSL) provides an intermediate position between
the natural-language and formal approaches. An aim of the DSL approach is to
re-use the established language of the domain problem, e.g. language used by
people working with dialectical games, so that developers have an intuitive un-
derstanding of the expressions in the language, but to confine the expressions to
those that are legal according to a formal grammar. Thus protocols are expressed
in a way that is executable, assuming that adequate tooling is created to support
the language, and immediately comprehensible to those versed in the language
of the problem domain. An example of this kind of approach can be found in the
Dialogue Game Description Language (DGDL) [32] a DSL that is founded on an



4

Move Types

Assertions: The content of an assertion is a statement P, Q, etc. or the truth-functional compounds
of statements: “Not P”, “If P then Q”, “P and Q”.

Questions: The question of the statement P is “Is it the case that P?”
Challenges: The challenge of the statement P is “Why P?”
Withdrawals: The withdrawal of the statement P is “no commitment P”.
Resolution demands: The resolution demand of the statement P is “resolve whether P”.

Dialogue Rules

RFORM : Participants may make one of the permitted types of move in turn.
RREPSTAT : Mutual commitment can only be asserted when a question or challenge is responded.
RQUEST : The question P can be answered only by P, “Not P” or “no commitment P”.
RCHALL: “Why P?” has to be responded to by either a withdrawal of P, a statement that chal-

lenger accept, or a resolution demands of the previous commitments of the challenger which
immediately imply P.

RRESOLV E: A resolution demand can be made only in situations that the other party of the
dialogue has committed in an immediate inconsistent conjunction of statements, or he withdraws
or challenges an immediate consequent of previous commitments.

RRESOLUTION : A resolution demand has to be responded by either the withdrawal of the offending
conjuncts or confirmation of the disputed consequent.

RLEGALCHALL: “Why P?” cannot be used unless P has been explicitly stated by the dialogue
partner.

Commitment Rules

Initial commitment, CR0: The initial commitment of each participant is null.
Withdrawals, CRW : After the withdrawal of P, the statement P is not included in the move

makers store.
Statements, CRS: After a statement P, unless the preceding event was a challenge, P is included

in the move makers store.
Defence, CRY S: After a statement P, if the preceding event was Why Q?, P and If P then Q are

included in the move makers store.
Challenges, CRY : A challenge of P results in P being removed from the store of the move maker

if it is there.

Termination Rules

1. The game will be ended when a participant accepts another participants view.

Fig. 1. The Rules of DE expressed using a natural language specification

Table 1. Set-theoretic Specification for Hamblin-type Games

Pre-Conditions - Commitment Store Contents

C∈CSn Commitment C is currently in commitment store CS
C/∈CSn Commitment C is not currently in commitment store CS

Post-Conditions - Alterations to Commitment Stores

CSn+1 = CSn ∪ {C} Commitment C is added to commitment store CS
CSn+1 = CSn \ {C} Commitment C is removed from commitment store CS



5

Table 2. Set-theoretic Specification for Hamblin-type Games

Move Specifications (utilising pre- & post-conditions)

Statement(Sx) Pre: Ø
Post: CPn+1 = CPn ∪ {Sx} ∧ COn+1 = COn ∪ {Sx}

Withdrawal(Sx) Pre: Ø
Post: CPn+1 = CPn \ {Sx}

Extended Backus-Naur Form (EBNF) grammar 3 to support the description of
syntactically correct and verifiable dialectical games. The language at the cur-
rent stage of development, however, needs software tool support particularly in
terms of user-facing (design) tools and execution “engines”. The following is an
example of a DGDL game description name “Simple”:

Simple{

{turns,magnitude:single,ordering:strict}

{players,min:2,max:2}

{player,id:Player1}

{player,id:Player2}

{store,id:CStore,owner:Player1}

{store,id:CStore,owner:Player2}

{Assert,{p},"I assert that",

{store(add, {p}, CStore, Speaker),store(add, {p}, CStore, Listener)}

}

}

In this example game a turn structure, two named players, and a commitment
store for each player are defined. A single assert move is then defined which incurs
commitment in both players commitment stores when it is played. This game is
for purely illustrative purposes and is indicative of the features and descriptive
character of DGDL descriptions.

There have been a variety of approaches to the diagrammatic description of
dialogue protocols. For example, in the Toulmin Dialogue Game (TDG) [33] a
state diagram is used to regulate the order of moves and assignment of roles
within a TDG dialogue. Finite State Machines (FSMs) have long been used
to define network protocols and have been widely used to model, analyse and
prototype distributed systems [34]. FSMs have also been used to describe conver-
sation policies in multi-agent systems [35]. UML sequence diagrams also provide
a way to diagrammatically depict dialogue protocols. For example, Agent UML
(AUML) [36] extends the unified modelling language (UML) to model intelligent
software agents and related agent-based systems. FIPA adopted this approach
to specify agent communication protocols such as the Subscribe Interaction Pro-
tocol 4 which enables an agent to subscribe to messages from another agent with
respect to a specific referenced object. The state machine and sequence diagram

3 https://github.com/siwells/DGDL/tree/master/grammar
4 http://www.fipa.org/specs/fipa00035/



6

approach may be more suitable for simple communication protocols [37] as they
visualise the actually occurred sequence of communications. It is not clear how
certain constraints and rules, for example the DE rule RREPSTAT : Mutual com-
mitment may not be asserted unless to answer a question or a challenge can be
represented on the diagram.

In summary, natural language specifications are not machine readable and are
subject to ambiguity, formal approaches are generally not user- and developer-
friendly, diagrammatic approaches are suitable for more simple protocols but
must be underpinned by some formal representation to enable them to be ex-
ecutable without additional work, and DSLs currently have insufficient tooling
to support wide-scale popular adoption.

3 Specifying Dialogue Games Using UML

The Unified Modelling Language (UML) is a language for specifying, visualising,
constructing, and documenting the artefacts of software systems. The latest
version, UML 2.0, supports 13 types of diagrams including class, sequence, and
state diagrams and one language; the object constraint language (OCL). OCL is
used to describe rules that apply to UML models and adds vital information to
the model that cannot be otherwise depicted using diagrammatic means. OCL is
formally defined, readable and writeable by both humans and a range of software
tools, and is easy to use [38]. This goes a long way towards satisfying the need
for a developer friendly formal language for describing dialogue games.

To use UML to represent the rules of a dialogue game, a model that captures
general properties of a dialogue game, such as that depicted in the UML class
diagram shown in Fig. 2, is constructed. The class diagram captures common
terms in the dialogue game domain such as the: game, player, dialogue history,
commitment store, turn, move, move content, proposition and inference. Each
dialogue game has a thesis and two players, a proponent of the thesis and an
opponent. Each game also contains a dialogue history that records the moves
made by the players on a turn by turn basis. The size of the dialogue history
is the total number of turns made by both players. Each turn has a unique
number and a player may make one or more moves in one turn. Each move
contains a move type and a move content which could be a proposition or an
inference. Each inference contains a set of data and a conclusion. The negative
value of a proposition or inference can be retrieved on request. Each player has a
commitment store that record the statements made or accepted during dialogue.
The commitment stores are publicly inspectable so a player can also view their
opponent’s store. The internal structure of a commitment store can be flexible
depending on individual games, e.g. to maintain separate lists of propositions or
inferences. A proposition or an inference can be checked against a commitment
store to see whether it is supported by others or by itself. The latter is useful
for banning circular arguments in dialectical systems. While the class diagram
specifies the generic terms used by dialogue games, OCL is required to annotate
the class diagram in order to provide a full specification of a dialogue game. The



7

description of DE as presented in 1 is used to demonstrate this. For example,
the DE move types rule can be specified as

--Player makes a legal move

context Player::makeMove():Move

--Permitted move types:

post: Set{’Assertion’, ’Question’, ’Challenge’, ’Resolve’, ’Withdrawal’}

->includes(result.getType())

The rule is specified as a post condition within the context of player make-
Move operation. context, post and result are OCL keywords and includes is an
OCL operation that applies to a set.

The DE dialogue rule RFORM can be specified as

--RFORM: Participants may make one of the permitted types of move in turn.

context Turn

inv: move->size()=1

context DialogueGame

inv: self.proponent.turn->forAll(getNumber()/2=1) and self.opponent.turn

->forAll(getNumber()/2=0)

The rule is specified jointly within the context of Turn and DialogueGame
class as two invariants: the first is that the set of moves associated with each turn
is exactly one and the second is that the turn numbers for the proponent are
odd numbers and for the opponent are even numbers given that the proponent
always starts a game. inv, self, and and are OCL keywords and size is an OCL
operation that applies to a set.

The DE commitment rule CR0 can be specified as

--Initial commitment, CR0: The initial commitment of each

participant is null.

context DialogueGame::start():String

post: proponent.store.content->isEmpty() and

opponent.store.content->isEmpty()

The rule is specified within the context of dialogue game start operation as
post conditions. isEmpty is an OCL operation that applies to a set.

The DE termination rule can be specified as

--Termination Rules: The game will be ended when a participant

accepts the other participant’s view.

context DialogueGame::end():String

pre:proponent.store.content->includes(thesis.getNegation()) or

opponent.store.content->includes(thesis)

--Playing

context DialogueGame::play():String

pre: proponent.store.content->excludes(thesis.getNegation())and

opponent.store.content->excludes(thesis)

The precondition for a dialogue game to end is that one partys store contains
the opponents thesis. Otherwise, the game is in the playing state.



8

Fig. 2. A generic model for dialogue games expressed using the UML class diagram
notation. This model captures the general core elements of dialogue games and provides
the basis for an API for generated code.



9

4 Automatic Generation of Dialogue Game Framework

Given a description of a dialogue game, such as the description of DE as pre-
sented in Fig. 1, and a UML diagram of a generic dialogue game as previously
depicted in Fig. 2, the UML diagram can be annotated using an OCL specifica-
tion file. An example of such a file can be found in the protocl de.ocl description
file5 which presents the OCL expressions used to describe DE. This file can
subsequently be processed by suitable tools, the Object Constraint Language
Environment (OCLE)6 is one example, to generate executable code. The output
of the code generation stage is executable Java code. This process essentially
yields the core of a dialogue game engine via code generation, for example, pro-
viding checks against the dialogue rules when a particular operation, such as
makeMove, is invoked, and generating an error message if a player breaks the
game rules. There are a number of advantages to using code generation to pro-
duce the core of the game engine. Primarily, it reduces the opportunity for the
game designer to introduce errors. Additionally code-generation reduces the time
required to implement and deploy new game engines and streamlines the effort
required, by automating much of the implementation process. As a result effort
can be focussed on the design of the game rather than implementation details.

Because the game engine Application Programming Interface (API) is based
upon the classes generated from the UML class diagram, which is static, it is
straightforward to build new, dialogue aware tools against it, for example, using
the engine to provide dialogue game managements for intelligent agents. This
relationship is illustrated in Fig. 3. Additionally, so long as the class model API
remains unchanged, different games can be generated by OCL tools and then
played by the agents via the game engine.

5 Conclusions & Future Work

Formal specification of dialogue games in a developer-friendly manner is attrac-
tive in terms of developing and testing dialogue games. OCL as part of the UML
is a formal language to describe complex business rules and thus providing a
tool framework that is more familiar to existing developers. The system we have
introduced, ProtOCL, demonstrates how to use OCL to specify dialogue games
via a generic UML class model which contains the terms and languages that are
persistent to the dialectical system domain. Particularly, the naturally expressed
dialogue games rules can be translated into OCL invariants and pre- and post-
conditions. The expressive power of UML/OCL to the dialogue games has so
far been demonstrated by the representation of the DE game using UML/OCL.
A dialogue game framework can be generated via the existing OCL tools and
the dialogue framework can be subsequently interfaced by the game engine and

5 This is available from the ProtOCL Git repository aavailable from the following
URL: https://github.com/siwells/ProtOCL

6 http://lci.cs.ubbcluj.ro/ocle/



10

Fig. 3. An overview of the ProtOCL dialogue system API from the code generation
perspective. The OCL tool generates a dialogue game framework that exposes a com-
mon interface. This interface can thus be exploited by software within further problem
domains.

agents. Using this approach it would be convenient for the dialogue game de-
signers to modify the game rules they are designing and test their games via the
game engine and agents on the fly. It is anticipated that the proposed work repre-
sents a step forward in the implementation of dialogue games and dissemination
of this approach within the wider software engineering context.

We plan to experiment with the generic class model enhancing it to support
a wider variety of dialogue games to enable further refinements taking place. A
dialectical system test-bed (the game engine and agents) can then be constructed
for the game developers to test the dialogue games and dialogue strategies they
have developed. One area of future work is to connect the current approach,
using UML and OCL specify a dialogue game using human-oriented, graphical
tools, with previous work on the Dialogue Game Description Language (DGDL)
which enables games to be formally defined and syntactically verified. This opens
the door to bi-directional movement of dialogue game specifications between
a system that aims for increased human utility, and a system that aims for
verifiability and formal correctness.

By bringing both approaches together we believe that a usable dialogue game
definition and execution system can be assembled that enables software devel-
opers to build systems using the tools that they are already familiar with, and
whose outputs can be evaluated and checked to ensure that they conform with
developer expectations. This work contributes not just to the design and im-
plementation of new games but also enables developers to immediately utilise
dialogue games using industry standard software engineering tools and tech-
niques.



11

References

1. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue. SUNY series in Logic
and Language. State University of New York Press (1995)

2. Hamblin, C.L.: Fallacies. Methuen and Co. Ltd (1970)
3. Walton, D.N.: The New Dialectic. University of Toronto Press (1998)
4. Mackenzie, J.D.: Four dialogue systems. Studia Logica 49 (1990) 567–583
5. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-

ficial Intelligence 171(10–15) (2007) 619–641
6. Reed, C., Grasso, F.: Recent advances in computational models of argument.

International Journal of Intelligent Systems 22(1) (2007) 1–15
7. Rahwan, I., McBurney, P.: Argumentation technology: introduction to the special

issue. IEEE Intelligent Systems 22(6) (2007) 21–23
8. Yuan, T., Moore, D., Reed, C., Ravenscroft, A., Maudet, N.: Informal logic dialogue

games in human-computer dialogue. Knowledge Engineering Review 26(3) (2011)
159–174

9. Grasso, F., Cawsey, A., Jones, R.: Dialectical argumentation to solve conflicts in
advice giving: a case study in the promotion of healthy nutrition. International
Journal of Human-Computer Studies 53(6) (2000) 10771115

10. Vreeswijk, G.A.W.: Iacas: an implementation of Chisholm’s principles of knowl-
edge. In: In Proceedings of the 2nd Dutch/German Workshop on Non-monotonic
Reasoning, Utrecht. (1995) 225234

11. Yuan, T., Svansson, V., Moore, D., Grierson, A.: A computer game for abstract
argumentation. In: In Proceedings of IJCAI’2007 Workshop on Computational
Models of Natural Argument, Hyderabad, India. (2007) 62–68

12. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons, Ltd
(2002)

13. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming and n-person games. Artificial Intel-
ligence 77 (1995) 321–357

14. Yuan, T., Schulze, J.: Arg!draw: an argument graphs drawing tool. In: The Sec-
ond International Conference on Computational Models of Argument (COMMA),
Toulouse, France. (2008) 62–68

15. Yuan, T., Schulze, J., Devereux, J., Reed, C.: Towards an arguing agents com-
petition: Building on argumento. In: Proceedings of 8th CMNA (Computational
Models of Natural Argument) workshop, European Conference on Artificial Intel-
ligence (ECAI), University of Patras, Greece. (2008)

16. Wells, S., Lozinski, P., Pham, N.M.: Towards an arguing agents competition: Ar-
chitectural considerations. In: Proceedings of 8th CMNA (Computational Models
of Natural Argument) workshop, European Conference on Artificial Intelligence
(ECAI), University of Patras, Greece. (2008)

17. Ravenscroft, A., Pilkington, R.M.: Investigation by design: developing dialogue
models to support reasoning and conceptual change. International Journal of Ar-
tificial Intelligence in Education 11 (2000) 273–298

18. Ravenscroft, A.: Designing argumentation for conceptual development. Computers
and Education 34 (2000) 241–255

19. Ravenscroft, A., Matheson, P.: Developing and evaluating dialogue games for
collaborative e-learning. Journal of Computer Assisted Learning 18 (2002) 93–101

20. Mackenzie, J.D.: Question begging in non-cumulative systems. Journal Of Philo-
sophical Logic 8 (1979) 117–133



12

21. Yuan, T., Moore, D., Grierson, A.: A conversational agent system as a test-bed
to study the philosophical model DC. In: Proceedings of the 3rd Workshop on
Computational Models of Natural Argument (CMNA’03). (2003)

22. Yuan, T.: Human Computer Debate, A Computational Dialectics Approach. PhD
thesis, Leeds Metropolitan University (2004)

23. Yuan, T., Moore, D., Grierson, A.: A human computer debating system and its
dialogue strategies. International Journal of Intelligent Systems 22(1) (2007) 133–
156

24. Yuan, T., Moore, D., Grierson, A.: A human-computer dialogue system for ed-
ucational debate, a computational dialectics approach. International Journal of
Artificial Intelligence in Education 18(1) (2008) 3–26

25. Reed, C., Wells, S.: Using dialogical argument as an interface to complex debates.
IEEE Intelligent Systems Journal: Special Issue on Argumentation Technology
22(6) (2007) 60–65

26. Kalofonos, D., Karunatillake, N., Jennings, N.R., Norman, T.J., Reed, C., Wells,
S.: Building agents that plan and argue in a social context. In Dunne, P.E., Bench-
Capon, T.J.M., eds.: Computational Models of Argument. IOS Press (2006) 15–26

27. Bodenstaff, L., Prakken, H., Vreeswijk, G.: On formalising dialogue systems for
argumentation in the event calculus. In: Proceedings of the Eleventh International
Workshop on Nonmonotonic Reasoning. (2006) 374–382

28. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Jour-
nal of Logic and Computation 15 (2005) 1009–1040

29. Brewka, G.: Dynamic argument systems: A formal model of argumentation pro-
cesses based on situation calculus. Logic and Computation 11(257–282) (2001)
619–641

30. Artikis, A., Sergot, M.J., Pitt, J.: An executable specification of a formal argu-
mentation protocol. Artificial Intelligence 171(10–15) (2007) 776–804

31. Wells, S., Reed, C.: Formal dialectic specification. In Rahwan, I., Moraitis, P.,
Reed, C., eds.: First International Workshop on Argumentation in Multi-Agent
Systems. (2004)

32. Wells, S., Reed, C.: A domain specific language for describing diverse systems of
dialogue. Journal of Applied Logic 10(4) (2012) 309–329

33. Bench-Capon, T.J.M.: Specification and implementation of toulmin dialogue game.
In: Proceedings of JURIX 98. (1998) 5–20

34. Shen, W., Norrie, D.H., Barthes, J.: Multi-Agent Systems for Concurrent Intelli-
gent Design and Manufacturing. CRC Press (2001)

35. Bradshaw, J.M., Dutfield, S., Benoit, P., Woolley, J.D.: KAoS: Toward an
industrial-strength open agent architecture. In: Software agents. MIT Press, Cam-
bridge, MA, USA (1997) 375–418

36. Odell, J., Bauer, B., Parunak, H.V.D.: Representing agent interaction protocols in
uml. In: 22nd International Conference on Software Engineering (ISCE), Berlin.
(2001) 121–140

37. Norman, T.J., Carbogim, D.V., Krabbe, E.C.W., Walton, D.: Argument and multi-
agent systems. In: Argumentation Machines: New Frontiers in Argument and
Computation. Kluwer (2004) 15–54

38. (OMG), O.M.G.: Object constraint language (ocl) 2.3.1 specification, iso/iec 19507
(2012)


