
Introducing ALIAS

Simon Wells1 and Roberto La Greca2

1 Edinburgh Napier University s.wells@napier.ac.uk
2 Edinburgh Napier University roberto@robertolagreca.com

Abstract. ALIAS is a Python library for constructing, manipulating, storing, vi-
sualising, and converting argumentation structues. It is available with full source
code under a copyleft license and aims to become a Swiss Army Knife for working
with arguments in a variety of end-user, researcher, pedagogical, and developer
contexts.

1 Introduction

This paper introduces “A Library for Implementing Argumentation Systems” (ALIAS)3,
a software library for describing and working with arguments. In the first instance
ALIAS supports Dung-style Abstract Argumentation Frameworks (AAFs) [1]. AAFs
and their associated semantic machinery, such as extensions and labellings, and ad-
ditional enhancements such as extensions, preferences, bipolarity, etc. have become a
popular approach to defeasibly reasoning over suitably structured collections of argu-
mentative data. Whilst AAFs often appear divorced from natural argument, seeming
to concentrate on increasingly esoteric abstractions, Bench-Capon recently presented a
good overview of how developments within the domain of AAFs have contributed to
an increased understanding of and capacity for reasoning about arguments within the
Artificial Intelligence and Law domain [2]. It is in this spirit, that natural language ar-
guments can be abstracted into AAFs and that the resulting frameworks can be usefully
analysed using abstract techniques, that this paper is presented. The remainder of this
paper is structured as follows: in section 2 we introduce the ALIAS library and briefly
discuss our motivation; in sections 3 and 4 we briefly discuss two of the contexts in
which ALIAS can be used; in section 5 we discuss some additional features of the tool;
finally in section 6 we draw some conclusions and outline directions for future work.

2 Introducing ALIAS

There were a number of motivations for the development of ALIAS. Amongst these
are the lack of free and open libraries for working with arguments, the lack of straight-
forward and naive implementations of AAF algorithms, for example that demonstrate

3 ALIAS is a free and open source project whose community page is hosted at GitHub https:

//github.com/alias-org/alias



2

the process of calculating a labelling or extension in a context useful for pedagogi-
cal purposes. Most importantly are the lack of flexible and extensible standalone tools
for working with arguments in a research context and the need for tools that enable
students to explore argumentss within a pedagogical context. Whilst there are many
argument tools, many have drawbacks such as not being available with source under a
copyleft license, being implemented in none-mainstream languages that put the tools
out of reach of many developers, or being hosted tools, running on third party web-
servers and thus leaving the end-user at the mercy of their tools host. ALIAS aims to
provide an exemplary toolkit, applicable within research and pedagogical roles, avail-
able with source under a community-oriented copy-left licence, flexibly deployable in
interactive, standalone, library, pipelined, and hosted contexts, implemented in a popu-
lar mainstream language that serves both software and web development communities,
and designed with sufficient flexibility and extensibility to become a useful argumen-
tation tool in a wide variety of contexts. Currently ALIAS has three core contexts of
use; as a standalone tool, as a programming library, and as an interactive pedagogic and
research environment. At its simplest, ALIAS is a pure Python4 library for defining and
working with arguments and provides a Python native API for constructing an AAF,
by adding arguments and attacks. Once constructed the AAF can be inspected to cal-
culate semantics according to a variety of extensions (complete, preferred, stable) and
labelling (complete, grounded, preferred, stable, semi-stable) based approaches. ALIAS
also provides support for a range of input/output formats including Aspartix “apx”[3],
trivial graph format “tgf”5, dot language6, JavaScript Object Notation (JSON)7, and
networkx8 formats and utility functions (argument existence, get attackers, conflict-
free, admissible, complete). This enables arguments to be imported or exported by a
variety of third-party tools with ALIAS playing the role of interlingua and converting
between the native formats of each tool as required. As a result when operating in the
standalone context ALIAS can perform an important role in enabling argument data to
be pipelined between diverse specialist tools. In the following two examples, the stan-
dalone and interactive environment contexts are explored but the use of ALIAS as a
Python library is not shown, preferring instead to concentrate ALIAS as an argumenta-
tion tool rather than as a development library. However such usage is a straightforward
and standard procedure that will be familar to the majority of Python developers.

3 Example: Using ALIAS in the Shell

ALIAS may be used in the Python shell, or else at the CLI by writing Python scripts. It
is within the scripting context that ALIAS can work within a heterogeneous pipeline of
tools. Both approaches make use of the same simple API to interact with the library. In
the following example, the library is imported, a new framework object is created and
given the name ‘example’. Subsequently two arguments are added to the framework

4 https://www.python.org/
5 https://en.wikipedia.org/wiki/Trivial_Graph_Format
6 http://www.graphviz.org/content/dot-language
7 http://json.org/
8 https://networkx.github.io/



3

using a list containing two elements ‘a’ and ‘b’ then an attack is added between the
arguments.

Listing 1.1. Simple example of using ALIAS in the default Python Shell
>>> import alias
>>> framework = alias.ArgumentationFramework(’example ’)
>>> framework.add_argument ([’a’,’b’])
>>> framework.add_attack ((’a’,’b’))

4 Example: Using ALIAS within iPython Notebooks

In this context, ALIAS is an interactive tool for learning about and experimenting with
arguments. All of the features of ALIAS are available, as they would be in the shell, a
script, or a programming context, however an iPython notebook9 provides an environ-
ment for interspersing text, images, and code to form a dynamic and interactive note-
book in which data can be manipulated on the fly, results gathered, interspersed with
explanatory text. Such an approach is becoming increasingly popular not only within
pedagogical contexts, for example, as a way to provide interactive exercises to students,
but also within research, particularly in data-oriented physical sciences where it is tak-
ing on the role of interactive digital laboratory notebook and data exploration tool. An
example of an iPython notebook showing the construction of an AAF interspersed with
explanatory text can be seen in Figure 1.

Fig. 1. The first several clauses of an iPython notebook using ALIAS

9 http://ipython.org/notebook.html



4

5 Additional Features of ALIAS

With the aim of becoming a ‘Swiss Army Knife’ for Argumentation, ALIAS pro-
vides basic support for persistence of arguments and visualisation. Whilst early devel-
opment has concentrated on AAFs the goal is to support representation and storage
of both abstract and natural arguments alongside tooling for describing, storing, and
manipulating both. In this respect ALIAS shares a similar space to Carneades [4] but
rather than promulgating a specific approach, like Carneades structured argumentation,
ALIAS ultimate aim is to provide tools for manipulating, transforming, and storing ar-
guments in order to bridge between more specialist tools. SQLalchemy10 is used to
provide a database abstraction layer. By taking this approach, ALIAS incorporates a
simple, consistent and extensible method for working with a range of underlying data-
stores. Because the choice of underlying datastore can not only affect the performance
or scalability of a system but can also be problematic depending upon the skillset of
users ALIAS does not prescribe a particular datastore. Data is persisted in the first
instance within plain-text files on the filesystem using the range of formats outlined
earlier. Additionally, support for persisting argument structures in the graph datastore
Neo4J11 is supported by default. Out of the box support for additional datastores is
in the development roadmap for ALIAS and will extend to at least CouchDB12 and
MongoDB13, using the aforementioned JSON serialisation functionality, and SQLite14.
There are currently two options for visualisation of argument structures. The first option
uses the network rendering facilities from the networkx library as illustrated in Figure
2. The second provides a standalone Javascript widget using the d3.js15 Javascript visu-
alisation library as illustrated in Figure 3 which shows the widget displaying within a
browser window. The Javascript widget and a graph.json file can thus be exported from
ALIAS and hosted on a webserver to enable dynamic visualisations to be deployed on
the web. It should be noted that both visualisation approaches can also be embedded
within iPython notebooks to provide in-line visualisations of arguments alongside the
code that is generating and manipulating them.

6 Conclusions

ALIAS is in early but active development and there are a range of directions in which
this work will be enhanced and proceed. Most importantly it will be deployment as a
teaching aid and evaluated by students. A secondary thread is further development, on
the one hand to increase the range of features, for example by incorporating support
for calculating a greater diversity of labellings and extensions and on the other hand to
make the system more performant. We plan to incorporate optional modules that en-
able semantics to be calculated using a range of techniques to enable both increased

10 http://www.sqlalchemy.org/
11 http://neo4j.com/
12 http://couchdb.apache.org/
13 https://www.mongodb.org/
14 https://www.sqlite.org/
15 http://d3js.org/



5

Fig. 2. A simple, 3 node AAF visualised using
the networkx library native graph visualisation Fig. 3. A simple, 5 node AAF visualised using

the ALIAS native javascript visualisation widget

performance and scalability. For example, implementing modules that use Answer Set
Programming and/or Constraint Programming, using high performance libraries such
as NumPy and SciPy, and using techniques such as parallelisation or memoization. An
additional extension will also add support for the representation and manipulation of
Concrete Argumentation Systems containing expressions in natural language. The first
methods planned will enable representation of annotated natural language texts to be
stored, perhaps taking Gate files as input [5], and thence for AAFs to be automatically
derived from them. One goal is to support a pipeline from natural language through,
mark up, analysis, manipulation, storage and visualisation, whilst providing a unified
and stable API. To summarise, we have introduced ALIAS, described its current fea-
ture set, outlined plans to extend that feature set, and given some examples of usage
constructing and manipulating simple argumentation frameworks.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning and logic programming and n-person games. Artificial Intelligence 77 (1995) 321–
357

2. Bench-Capon, T.: Open texture and argumentation: what makes an argument persuasive? In:
Logic Programs, Norms and Action. Springer Berlin Heidelberg (2015) 220–233

3. Egly, U., Gaggl, S., Woltran, S.: Aspartix: Implementing argumentation frameworks using
answer-set programming. In: Proceedings of the Twenty-Fourth International Conference on
Logic Programming, (ICLP’08), Springer (2008)

4. Gordon, T.F., Prakken, H., Walton, D.: The carneades model of argument and burden of proof.
Artificial Intelligence 171(10–11) (2007) 875–896

5. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell,
G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M.A., Saggion, H., Petrak,
J., Li, Y., Peters, W.: Text Processing with GATE (Version 6). GATE (2011)


