
Towards An Arguing Agents Competition:
Architectural Considerations

Simon Wells1 and Paweł Łoziński2 and Minh Nhat Pham3

Abstract. The primary purpose of this paper is to contribute to
the discussion regarding the nascent Arguing Agents Competition
(AAC) by exploring some of the issues relevant to the creation of
a distributed online Competition. A secondary goal is to outline the
implementational work that is currently underway and both to spur
interest in contributions towards the development of the AAC archi-
tecture and to elicit participation in the eventual, resulting competi-
tions. To achieve these ends an architecture for supporting a persis-
tent, distributed, online AAC is introduced that is rooted in an extant
computational argumentation game. Following this some issues rel-
evant to such an approach are explored.

1 INTRODUCTION

The Arguing Agent Competition (AAC) is seen as an open environ-
ment in which heterogeneous agents can engage in competitive ar-
gument against one another. The notion is that agents can be con-
structed that argue with each other, according to a specific argumen-
tation game protocol, and the assumption is made that the agent with
the best strategy will “win” according to the criteria of the competi-
tion, therefore giving us a way to identify successful argumentation
strategies. Given this notion of an AAC, the main aim of this paper
is to explore the architecture necessary to support a distributed, on-
line AAC in the context of work already carried out, and currently
being extended at a number of locations. The initial starting point
is to adopt Argumento, an extant argumentation game engine, as the
argument-game playing core, and to extend this with new functional-
ity to support a persistent online argument competition. The current
state of Argumento and its place in the proposed AAC is explored
more fully in a companion paper [28] which explores the motivation
for an AAC, the motivation for the adoption of Argumento as an in-
tial core game playing engine, and proposed enhancements that are
required to be made to Argumento to support an AAC. It should be
noted that Argumento is not a comprehensive computational argu-
mentation game engine and there are many other approaches to argu-
mentation which could be explored in the context of an AAC, but by
using an existing game implementation initially, more rapid progress
can be made on developing the distributed architecture because there
is one less aspect to implement initially. Rather, the notion o sup-
porting a variety of game engines using a pluggable architecture is
envisaged which would enable a degree of flexibility in the imple-
mented AAC. However by adopting Argumento, the basic system
can be used as a scaffold to support the more rapid development of
the distributed aspects of the AAC. Once a distributed architecture is

1 University of Dundee, U.K., email: swells@computing.dundee.ac.uk
2 Warsaw University of Technology, Poland, email: pawel.lpl@gmail.com
3 University of Dundee, U.K., email: m.n.pham@dundee.ac.uk

running, then Argumento can be enhanced, or even replaced, to sup-
port different models of argumentative interaction enabling different
approaches to argumentative interaction to be explored. By having
a live online system, in which agents are continuously engaging in
competitive argumentative behavior, and into which new agents, car-
rying new argumentative strategies, can be injected at any time, a
continuous agent argument benchmarking system can be built. This
could be used to measure some aspects of progress in the field of
computational argument, but also to spur, or at least facilitate friendly
competition between researchers in the field. This paper examines a
possible architecture for a persistent, distributed AAC and explores
some aspects of both monologic and dialogic argument as they per-
tain to such a framework.

2 BACKGROUND
This papers builds on three ideas, firstly, that an existing argument
application could be expanded to form the foundation of an AAC.
Secondly that there is an existing model for competitive agent devel-
opment that could inform the design of an AAC. Finally, that there
are currently a variety of approaches to doing computational argu-
mentation and that an AAC should support at least the most common
approaches if not a wider variety of approaches.

2.1 Argumento
Argumento is an extant software system [29] for playing computa-
tional argument games that enables agents to play an argumentation
game using an abstract argumentation system modeled after Dung
[9] and an argument game adapted from Wooldridge [27]. Argumento
currently enables human-human, human-agent, and agent-agent play
and it is the automated agent-agent play that is of interest when build-
ing an AAC. In this paper’s companion [28] a number of extensions
are discussed that could be used to help Argumento to form the ba-
sis of an AAC. These include enhancements to the existing argument
game, enforcement of move legality, adding and removing agents
from the competition, simplifying the running of group competitions,
enabling game review, and inclusion of multiple dialogue games.

However Argumento, even if all of the proposed extensions are
implemented, is still a centralized, standalone application that is not
networked, and is oriented towards a one-off competition situation.
A more enticing vision is that of a persistent online AAC where the
online repository continues the centralized refereeing activities that
are currently within Argumento’s remit, but where the arguing agents
themselves can be distributed about many different systems. Ideally
there would be a constant source of new agents with live statistics
available through a spectator web-interface indicating which agents
are performing best in the competition at any given point.

2.2 TRADING AGENT COMPETITION

One place to start in planning the construction of an AAC is to look at
existing competition systems. The most popular is arguably the Trad-
ing Agent Competition (TAC) [26] held at the annual Autonomous
Agents and Multiagent Systems (AAMAS) conference. The aim of
the TAC is to promote and encourage research into trading agents by
making available an arena in which researchers can pit their creations
against each other in a competitive fashion.

TAC is currently centered around two competitions, TAC classic
[25], based upon the travel agent scenario in which agents compete
in multiple simulataneous auctions to complete a complex procure-
ment process, and TAC SCM [3], a supply chain management com-
petitions using a computer manufacturer scenario in which agents
compete to source components, and build and sell machines. Clearly,
the success of TAC, both in terms of the number of competitors reg-
ularly taking part and the number of papers published partly as an
outcome from developing TAC agents, is something that the AAC
should aim to emulate. There is the question though of how the TAC
model can be improved upon. A TAC is run each year at which the
TAC champion is identified and developers can download and run
their own TAC servers, however the provision of public TAC servers
is lackluster with no facility to access records of competitions or to
extract statistical data.

Ideally therefore, the AAC would be played in a number of modes.
Primarily, there would be the flagship mode in which an annual com-
petition is played wherein competing agents argue, and the best is
crowned the champion. In the day-to-day mode, agents could either
be uploaded to an AAC server on which they are run, possibly in a
virtual machine for safety, or could be run in a distributed fashion,
joining suitable competitions run by the AAC server as they are an-
nounced. Finally it should be a straightforward matter to download
and setup a new server to allow ad hoc offline competitions to be
run. Additionally a web interface to previous competitions allowing
retrieval of statistical data about the AAC might prove to be a useful
source of research data.

2.3 ARGUMENTATION IN AGENTS & MAS

Investigations into intelligent, autonomous agents, and multiagent
systems (MAS) have generally looked at two facets of argumenta-
tion, the first investigates aspects of defeasible and automated rea-
soning and looks at how agents can use arguments either internally
as a part of their decision making processes, or externally, to deter-
mine how to evaluate another agents position, and the second facet
investigates how argumentation based interaction protocols can be
exploited in inter-agent communication.

Argumentation frameworks are one way in which argumentation
has been adopted for use in agents. Currently the most popular frame-
work in MAS seems to be the Dung Argumentation Framework
(DAF) [9], which identifies a network of attack relationships between
arguments in a graph. From this graph various attributes for any given
argument, or set of arguments, can be computed which allow conclu-
sions to be drawn about the graph and the arguments that populate
it. There has been much work recently to adapt and extend DAFs to
incorporate necessary argumentation theoretic concepts such as sup-
port relationships into the framework.

A popular approach to specifying agent interaction is in terms of a
simple Dialectical Game, a term coined by Hamblin [15]. Dialecti-
cal games are, in the simplest case, basically two-player, turn-taking
games which are used to structure the interactions between a dia-

logue’s participants who use their turn to make moves which corre-
spond to the kinds of things that they can say for example, respond-
ing, affirming, questioning, &c. It is the rules of the dialectical game
that specify which moves are legal or illegal at any given point in a
dialogue and also how making any given move affects the positions
of the participants as a result, for example, by altering the speakers
dialogical commitment with respect to whatever was said.

Dialectical games have been proliferating recently and have been
utilized in a wide range of applications including, to refer to but a
few, the analysis of logical fallacies [15], as tools for belief revision
in AI systems [11], in computer based learning to structure student-
tutor interaction [18], in law to explore evidential structures [5], and
in multiagent systems to structure communicative agent interaction
[17].

This raises the question of the kinds of argumentation that an AAC
should support. Currently Argumento supports a Dungian DAF on
which a game is played but, given the variety of frameworks for rep-
resenting arguments, it would be prudent to enable flexibility in the
choice of framework used during a competition. The benefit of en-
abling such a flexibility might also be felt in the adaptability and
utility of any argumentation strategies that are subsequently devel-
oped if they are designed to perform well under any argumentation
framework rather than just exploiting the features of a single given
framework. Interaction protocol representation in Argumento is cur-
rently rudimentary and is predicated on features of the underpinning
abstract argumentation framework, such as movement from one argu-
ment node to another in the argument graph along the attack relation-
ship edges. Many dialectical games, although themselves designed to
be simple, are much more sophisticated than the Argumento game in
terms of the range of moves and generally support a range of moves,
each of which is usually fashioned after some form of illocutionary
utterance[4] or speech act [20]. These moves generally enable a par-
ticipant to explore a more complex network of arguments than the
simple attack networks of Dung and should therefore be necessary to
enable interesting games to be played upon more complex argumen-
tation frameworks.

3 DISTRIBUTED ARCHITECTURE

The aim is to construct a distributed online software system that sup-
ports an AAC whilst also talking advantage of existing software so as
to minimize new development in the first instance. By adopting the
extant Argumento software, the AAC has a scaffolding that provides
early functionality but with the disadvantage of only being able to
play local games, e.g. on the same machine that the Argumento soft-
ware is running on. Currently new Argumento agents are created by
extending the Argumento Agent.java class and implementing method
to account for various agent behaviours. A simple way to distribute
this would be to enable Argumento agents to run on remote machines,
however this would have the disadvantage of still requiring agents to
be written using the Argumento agent class, when there are many
popular agent development framework available that are much more
advanced. The proposed solution is to create a proxy agent that ap-
pears to Argumento to be a normal Argumento agent but which for-
wards all of the communcations between the Argumento engine and
the system over the internet via a web service based infrastructure
to a remote agent system. The current plan is to create an appli-
cation programming interface to support the development of Argu-
mento agents in a variety of agent platforms, including JUDE [16],
JACK [14], and JADE [10]. The webservice architecture is planned
also to be written in Java and supported using Apache Tomcat [2] to

2

support the web applications and Apache Axis 2 [1] to support the
web services infrastructure. This architecture is illustrated in figure
1 which shows the AAC server containing an Argumento engine and
two native Argumento agents. A number of Argumento agent prox-
ies are also illustrated connecting the Argumento engine, which sees
each proxy merely as another Argumento agent, though a web service
interface to other agents, one for each proxy, developed using alterna-
tive agent frameworks. In the illustration agents three through eleven
are non-native, proxied Argumento agents. The advantage of this ap-
proach is that each agent is able to take advantage of the resources in
their own implementation framework, for example, the JUDE agents
six, seven, and eight, could each make use of the JUDE defeasible
reasoner to support their individual, internaly reasoning and deliber-
ation processes, before communications are serialised over the web
service interface back to the Argumento engine for appraisal accord-
ing to the game rules.

4 MONOLOGIC ARGUMENTATION ISSUES

In this section we will explore the effect that extending [29] Argu-
mento to distributed architecture has on the Arguing Agents Competi-
tion. To state the obvious, all the problems generated by a distributed
approach to argumentation can be to a great extent simulated in a
centralized system running on a single machine, but in a distributed
environment one can no longer choose whether to invoke them and
deal with them or not.

AAC, as any distributed system, faces the standard issues that
occur in such architecture as a result of its characteristic features:
resource sharing, openness, concurrency, scalability, fault tolerance
and transparency. It is not the purpose of this paper to review these
issues as it is the field of separate study. Rather, we focus on some of
the main issues that distribution cause from the dialogical perspec-
tive.

4.1 Basic issues

The very basic problem that needs to be addressed is explicit formu-
lation of the assumptions regarding the knowledge that agents have
about the argumentation graph that underlies their discussion. In [29]
the assumption is that agents know about the whole graph, which al-
lows then e.g. to build dialogue trees and recursively calculate prob-
ability of winning a dialogue, as described in [29, 5 Agent Strategy].
This approach is often referred to as closed world assumption which,
generally speaking, means that the system has full knowledge of the
world it reasons about.

This is of course a good start to work on argumentation strategies,
but in a distributed environment it would mean that the first step of
every dialogue would be to transfer the whole graph of arguments to
it’s participants which both can be time-consuming for large graphs
and is inefficient, because eventually only a subset of it will be used
in the dialogue. Additionally, it limits the system’s ability to approxi-
mate the natural dialogue, because only in fairly simple cases humans
are able to grasp and process the whole domain of dispute at once,
especially at the beginning of the discussion.

With respect to above, the distributed AAC should rather lay on
the open world assumption, which in the given case means that the
we also allow situations where agents have only access to certain
argumentation subgraph at any moment of the dialogue. Of course,
their subgraphs must overlap in order to make any dialogue possi-
ble. For example, a referee (e.g. located at the server) could initiate

the dialogue by sending each participant a certain subgraph of argu-
ments, and than provide them with more knowledge as needed. The
agents could also acquire the knowledge from each other. This auto-
matically raises the issue of types of dialogue present in AAC, but
we will leave that for a moment.

For now let us just emphasize that if agents have access only to a
subgraph of arguments, than we need to decide how big can it be. Al-
ternatively, we could decide how long can the agent “think” (analyze
the argumentation graph, ask for more knowledge, etc.) before mak-
ing a move in the dialogue. Which leads us to another basic issue. As
one of the main purposes of AAC would be evaluation of argumenta-
tion strategies, the fact that agents participating in a discussion run on
different, remote machines makes comparing strategies a more com-
plex problem. Obviously, the faster the machine is the more agent’s
deliberation can take place in a given amount of time. So from the
fact that certain agent won a dialogue (without specifying what ex-
actly this means) does not immediately follow that it has a better
strategy. One solution to this could be analogous to the one observed
in combat sports, where typically competitors are divided into weight
categories with one separate opened category where anyone can par-
ticipate. So too, we could have in AAC different categories of par-
ticipants depending on the strength of machines they run on. At this
stage we are far from suggesting that this is the best solution, espe-
cially given the fact that the comparison of argumentation strategies
can be based on much more factors than just the win-loss rules.

Apart from the issue of different agents’ capabilities, evaluation of
strategies requires also a good way of measuring the time a partici-
pant actually spends on “thinking” in opposition to the time spent on
communication e.g. through the Internet. For the purpose of demon-
stration we can make a quick outline of some possible solutions to
this problem:

• the simplest and least reliable: relaying on the agent and requiring
him to sent the amount of time he spent on deliberation with his
move;

• more resource-consuming: sending the agent an immediate-
response message which it should send back with no delay —
this would allow the referee to measure the time lost solely on
communication;

• “lazy”: assume that time constraints for agents’ moves are so big,
that communication delays do not matter.

Let us now return to the problem of knowledge distribution that
emerged earlier in this section. Despite the fact that participants of
AAC run in a distributed environment, they need to have the same un-
derstanding of argumentation framework instance (which we called
an argumentation graph) that underlays their discussion.

One possible solution indicated few paragraphs earlier bases on an
analogy to natural dialogues, which according to [24] can be divided
into six categories: persuasion, inquiry, negotiation, information-
seeking, deliberation and eristic. As Walton and Krabbe point out,
it is not claimed that this is either complete or the only possible clas-
sification of dialogues, but it is a very convincing explanation of how
the natural dialogue actually works and it certainly gives a hint on
how to deal with the problem of knowledge distribution. The idea
would be to introduce a second type of dialogue to the agents’ in-
teraction protocol, namely the information-seeking dialogue which
(as Walton suggests in [23]) is engaged in when participants seek to
acquire or give information.

At any given stage of a dialogue, it’s participants can request to en-
gage in information-seeking dialogue, either with the referee or with
another participant, if the agent decides it has insufficient knowledge

3

Architecture Consideration of the Arguing Agent Competition

WebService allows Remote Agents to take part in the competition by

providing an interface which allows agents to register and interact within the game.

Also WebService takes account of security issues, e.g. identify an agent through

AgentID, prevent unauthorized actions by using encrypted data, etc!

Agent with capability of arguing and joining the Competition through

WebService Interface. An agent could be built on various Agent developing

Framework, such as Jude, Jade, Jack, etc... as long as it using the standard interface

provided by WebService.

In contrast with an Agent defined in Argumento which includes only two

options of strategy, namely randomization or utility calculating [2], there are highly

open possibilities of strategy. Given the knowledge of the Argumentation framework,

an agent is able to use its own strategy to win the competition.

F igure 1! Architecture consideration of the Arguing Agent Competition2

1.3 Scenario
From the Architecture described in figure, it might be useful to consider the

case that a Jude-based agent manages to get involve the competition. Firstly, Agent 6

shall be registered before it could join into the dialogue. It then will be assigned an

unique AgentID which help the Server identify an agent among those taking part in

"#$%&'()*+,$-%(./0$1'.+%"#$%2,$/"'*.%*3%4who are you?56
From this point on, Agent 6 shall include its AgentID in every messages

sending to Server (through WebService). To prevent any unauthorized action, e.g. an

agent from Jade framework may try to pretend to be Agent 6, this sensitive data could

be highly secure by Java Data Encryption. Each message containing a movement of

Agent 6 arrives in Server should trigger Server to inform other agents.

In the case of Agent 6 withdrawing from the game, Server is responsible for

sending a broadcasting message about this event.

References

2
 AP- AgentProxy

Figure 1. Proposed Distributed AAC Architecture

for continuing the discussion. As it was indicated earlier, we need
to impose some constraints on the number of such inquiries in or-
der to avoid blocking of the competition with long data transfers.
Of course, if the information-seeking dialogue would be permitted
among competition participants, they would be strongly required to
obey the Gricean Cooperative Principle (vide [13]), more specifi-
cally the quality maxim that states:

“Do not say what you believe to be false.”

Or simply speaking: Don’t lie. The application of this maxim as well
as the whole Cooperative Principle should not be limited only to
information-seeking dialogue, but in this case the absence of it most
clearly defeats the point of having the dialogue.

Argumento is based upon Dung’s argumentation framework as de-
fined in [9]. This approach has many advantages, the most obvious
being the simplicity of implementation, a small amount of informa-
tion that needs to be contained in a single dialogue move and lack of
commitment to any particular theory of internal argument structure.
Nevertheless, the simplicity of this framework can also be a disad-
vantage in the sense that it gives a very limited amount of information
to base argumentation strategy on: the binary attack relation.

Although extending Argumento with a more sophisticated argu-
mentation framework is an attractive idea, we would not want to limit
AAC’s capabilities to just one solution knowing that there is a wide
variety of proposals on how to define an argumentation framework.
Hence, challenging but very interesting aim of the extension of Ar-
gumento to AAC would be to allow the evaluation of strategies based
on different argumentation frameworks, whether it would be some
developments of Dung’s framework such as [6], a more elaborate
framework like Vreeswijk’s Abstract Argumentation System (vide
[21]) or an approach based on a more conventional conception of
argument’s internal structure e.g. Carneades Argumentation Frame-
work ([12]).

It makes sense, where possible, to build upon and exploit existing

standards to facilitate the AAC. For example, utilizing agreed for-
mats for argument interchange will lower the bar to entry for new
AAC competitors. Whilst there are a variety of methods for repre-
senting and exchanging arguments, a nascent format, the Argument
Interchange Format (AIF) [7] would be a useful tool that the AAC
could exploit. The AIF enables storage and interchange of argumen-
tation graphs in a distributed environment, but on the other it is not
bound with any particular argumentation framework, and was in fact
designed to support a range of differing argumentation frameworks.

Finally, we should consider the possibility of simulating the sit-
uation often found in natural argumentation, when it’s participants
do not share the same understanding of the domain of their dispute.
Translating the problem to formal argumentation it would mean the
possibility of having dialogues in which agents don’t rely on iden-
tical graphs of arguments, although they should use the same argu-
mentation framework. On the other hand one can imagine a situa-
tion where debating agents use different frameworks (e.g. bipolar
and CAF) and try to somehow take these differences into account.
A similar problem of merging different argumentation graphs was
already addressed (in the context of Dung’s AFs) in [8], where merg-
ing operators are introduced in order to produce a single graph. The
difference of course is that in AAC we would need a more dialectical
approach to the problem which remains to be developed.

To summarize, we have explored some of the implications of mov-
ing Argumento to a distributed environment. We are far from claim-
ing completeness of this list, it is also not intended to propose ready
solutions to given problems. Rather, it serves as a manifestation of
the great potential that Arguing Agents Competition has and a spec-
ulation on possible future developments of this project.

5 DIALOGIC ARGUMENTATION ISSUES
Assuming the use of the AIF to represent monologic argument, it
would be sensible to also adopt methods of dialogue representation,

4

that build upon the AIF, thereby enabling a uniform approach to deal-
ing with arguments and the interactions that exploit them, in the
AAC. One framework that has been proposed for representing the
dialogical aspects of argumentation and which builds upon the AIF,
is the AIF+ [19]. The AIF+ introduced the notion that movement
from one locution to the next in a dialogue is licensed by a Transi-
tional Inference Scheme which is analogous to the inference between
propositions captured by argumentation schemes [22]. Using Transi-
tional Inference Schemes, the AIF+ can be used to specify a dialogue
protocol and to record the transcript of utterances made during a di-
alogue.

Given the flexibility of AIF for argument representation, enabling
the interchange of arguments, and argument fragments, between the
various agents and the Argumento engine regardless of underlying
framework, it would seem prudent to utilize the AIF+ to interchange
dialogue fragments, for example utterances within a given dialogue
game, to represent the rules of the game, and to record the transcript
of the final game state, so that the AAC can be represented at all
levels within a consistent representational framework regardless of
underlying semantics.

6 CONCLUSIONS & FUTURE WORK

This paper has examined the architecture of an AAC that would en-
able multiple, distributed, heterogeneous agents to engage in argu-
ment using an existing agent argumentation application. Work is cur-
rently ongoing to implement the web-service framework to enable
the distribution of agents engaging in a competition so that they are
not limited to running solely on the competition server. Once dis-
tribution is implemented the next step is to enable heterogeneous
agents, implemented using a variety of agent frameworks, to join an
Argumento competition proxied to instances of default Argumento
agents to form the basic AAC implementation framework.

Future work will seek to expand on this basic platform by expand-
ing the supported argumentation frameworks and game protocols.
There are still a number of open questions about such an endeavor
however, the most pressing concerns the competition protocols which
must be developed so as not to prejudice any subsequent argumen-
tation specific aspects. It should also be noted that in section 3 it is
glibly stated that the “best” agent will be crowned champion, but the
exact mechanism by which such a best agent will be determined is
not yet apparent although there are some directions hinted at in [28]
and [29].

In summation, the AAC is an exciting opportunity to build a new
tool that researchers in argumentation can exploit, and that can at-
tract new researchers to the area. It is also hoped that this paper will
stimulate some discussion around the issue.

ACKNOWLEDGEMENTS

We would like to acknowledge the implementational work on Argu-
mento by Jenny Schulze and Tang Ming Yuan at the University of
Akureyri, Iceland, as well as all of those other researchers currently
building various aspects of the AAC.

REFERENCES
[1] The Apache Software Foundation Apache Axis 2.

http://ws.apache.org/axis2/, 2008.
[2] The Apache Software Foundation Apache Tomcat.

http://tomcat.apache.org/, 2008.

[3] R. Arunachalam and N. Sadeh, ‘The supply chain trading agent com-
petition’, Electronic Commerce Research and Applications, 4, 63–81,
(2005).

[4] J. L Austin, How To Do Things With Words, Oxford University Press,
1962.

[5] T. J. M. Bench-Capon, ‘Specification and implementation of toulmin
dialogue game’, in Proceedings of JURIX 98, pp. 5–20, (1998).

[6] C. Cayrol, C. Devred, and M. Lagasquie-Schiex, ‘Handling controver-
sial arguments in bipolar argumentation systems’, in Computational
models of argument (COMMA), Liverpool, 11/09/2006-12/09/2006,
eds., Paul E. Dunne and Trevor J.M. Bench-Capon, pp. 261–272,
http://www.iospress.nl/, (septembre 2006). IOS Press.

[7] C. Chesnevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari,
M. South, G. Vreeswijk, and S. Willmott, ‘Towards an argument in-
terchange format’, Knowledge Engineering Review, 21(4), 293–316,
(2006).

[8] S. Coste-Marquisa, C. Devreda, S. Koniecznya, M. Lagasquie-Schiexb,
and P. Marquis, ‘On the merging of dungs argumentation systems’, Ar-
tificial Intelligence, 171(10-15), 730–753, (2007).

[9] P. M. Dung, ‘On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning and logic programming and n-person
games’, Artificial Intelligence, 77, 321–357, (1995).

[10] Java Agent DEvelopment Framework. http://jade.tilab.com/, 2006.
[11] R. A. Girle, ‘Knowledge organized and disorganized’, Proceedings of

the 7th Florida Artificial Intelligence Research Symposium, 198–203,
(1994).

[12] T. F. Gordon and D. N. Walton, ‘The carneades argumentation frame-
work: Usuing presumptions and exceptions to model critical ques-
tions’, in Computational Models of Natural Argument, Proceedings of
COMMA 2006, eds., Poul E. Dunne and Trevor Bench-Capon, volume
144, pp. 195–207. COMMA, IOS Press, (2006).

[13] H. P. Grice, ‘Logic and conversation’, in The Logic of Grammar, eds.,
Donald Davidson and Gilbert Harman, 64–75, Dickenson Publishing
Co., Encino, California, (1975).

[14] Agent Oriented Software Group. http://www.agent-software.com,
2006.

[15] C. L. Hamblin, Fallacies, Methuen and Co. Ltd, 1970.
[16] Calico Jack Ltd. http://www.calicojack.co.uk, 2005.
[17] P. McBurney and S. Parsons, ‘Agent ludens: Games for agent di-

alogues’, in Game-Theoretic and Decision-Theoretic Agents (GTDT
2001): Proceedings of the 2001 AAAI Spring Symposium, (2001).

[18] D. Moore and D. Hobbes, ‘Computational uses of philosophical dia-
logue theories’, Informal Logic, 18(2 and 3), 131–163, (1996).

[19] C. Reed, S. Wells, G. W. A. Rowe, and J. Devereux, ‘Aif+: Dialogue in
the argument interchange format’, in 2nd International Conference on
Computational Models of Argument (COMMA 2008), (2008).

[20] J. R. Searle, Speech Acts, Cambridge University Press, 1969.
[21] G .A. Vreeswijk, ‘Abstract argumentation systems’, Artificial Intelli-

gence, 90(1–2), 225–279, (1997).
[22] D. N. Walton, Argumentation Schemes for Presumptive Reasoning,

Lawrence Erlbaum Associates, 1996.
[23] D. N. Walton, ‘The place of dialogue theory in logic, computer science

and communication studies’, Synthese, 123, 327–346, (June 2000).
[24] D. N. Walton and E. C. W. Krabbe, Commitment in Dialogue, SUNY

series in Logic and Language, State University of New York Press,
1995.

[25] M. P. Wellman, A. Greenwald, P. Stone, and P. R. Wurman, ‘The trading
agent competition’, Electronic Markets, 13(1), (2003).

[26] M. P. Wellman, P. R. Wurman, K. O’Malley, R. Bangera, S. Lin,
D. Reeves, and W. E. Walsh, ‘Designing the market game for a trad-
ing agent competition’, IEEE Internet Computing, 5(2), 43–51, (2001).

[27] M. Wooldridge, An Introduction to Multiagent Systems, John Wiley &
Sons, Ltd, 2002.

[28] T. Yuan, J. Schulze, J. Devereux, and C. Reed, ‘Towards an arguing
agents competition: Building on argumento’, in CMNA 2008, Under
Review, (2008).

[29] T. Yuan, V. Svansson, D. Moore, and A. Grierson, ‘A computer game
for abstract argumentation’, in Proceedings of the 7th Workshop on
Computational Models of Natural Argument (CMNA’07), (2007).

5

