
Testing Computational Dialectic

Simon Wells and Chris Reed

May 22, 2005

Abstract

Computational dialectics are a powerful way to structure the com-
municative acts that are expressed during the process of argumen-
tation. Many such systems have been proposed but there has been
no consensus over what constitutes a good system, or on what basis
such a consensus could be built. This paper introduces a testbed for
computational dialectics that enables disparate systems to be easily
implemented and investigated, and for further comparisons between
those systems to be made.

1 Introduction

This paper introduces a scenario and knowledge domain for computational
dialectic testing, named GC0, and an implementation of that domain named
Sweetwater. The purpose of GC0 and Sweetwater are to provide tools for
automating the comparison and evaluation of computational dialectics.

Formal dialectics are two-player, turn-taking games. The players take
turns to make moves in accordance with a set of rules. Moves are locution-
ary acts for which the rules prescribe, prohibit or permit the legality at any
given point. Formal dialectics were introduced in [8] as a practical means to
formally structure the interactions between the participants of a dialogue.
The aim was to examine and clarify the conditions and situations in which
logical fallacies occur. Computational implementations of dialectics have
found application in many areas of computing research, including as inter-
face components in computer-based learning systems [16], in AI and law,
and as a means to structure the communications between software agents
[17]. Many systems of dialectics have been proposed including, H [8], DC
[10], DL3 [7], PPD [26], R [21] as well as related systems such as the Toulmin
Dialogue Game [5], the case study games [11], the eightfold model [12] and



variations on existing dialogue games [1]. Dialogue games and formal dialec-
tic systems have also been proposed as means to structure argumentative
dialogue between agents in a MAS [18].

The abundance of dialectics mean it is not straightforward to select an in-
dividual formulation of rules to implement, nor is it simple to identify which
systems are best applied to a given situation. It is necessary that this situa-
tion is clarified. For dialectics to be accepted and implemented by developers
it is necessary to be able to show how these systems differ from each other,
how they perform, and to which communicative situations a given system
is best applied. Approaches to this problem involve comparison of the rules
which constitute a system of dialectic. Various aspects of this approach
have been examined in [13] which looks at measurable attributes of dialogue
systems and [27] which examines the unified specification of such systems.
Another approach uses comparison and analysis of the dialogues produced
by a system and is the basis for the work presented here. Together these
approaches enable a comprehensive overview of computational dialectics.

2 Finding a drosophila

Drosophila Melanogaster is a type of fruit fly used in the biological sciences
as a testbed against which to measure progress [3]. Herbert Simon [22] and
later John McCarthy [14] refer to the use of Chess as a ’drosophila’ for
AI. In a similar vein McCarthy proposes the missionaries and cannibals
puzzle as a drosophila for problems in logical AI [15]. The notion is that
certain classes of problem can be used as a basis for measuring, testing
and comparing the progress made in a given field. This concept, the use
of puzzles, problems and games, can be used as the basis for a testbed
for computational dialectics. Precedent for this approach is found in [23]
and [24] which posits the application of benchmark problems to research
in defeasible reasoning and the interpolation of said results as a pragmatic
research method.

Our drosophila is the four-colour problem[6], a subproblem in the graph-
colouring domain. This asks whether any map can be coloured using only
four colours such that no two neighbouring regions share the same colour.
In graph-theoretic terms each region can be considered to be a vertice in
a graph. It may then be asked whether, given a connected planar graph,
only four colours are required to assign each vertice a colour such that no



neighbouring vertices share the same colour. For non-planar graphs it may
be asked whether the graph can be coloured using n colours with the same
stipulations.

The selection of this problem relies on the need to satisfy several criteria
for a testbed for dialectics:

1. The problem should provide a social context for initiating argumen-
tative dialogue incorporating goal-directed behavior, problem-solving
and reasoning abilities.

2. The knowledge domain extracted from the problem must provide a
basis for argumentative discourse between agents. Argument artifacts
should be rooted in the state of the mas so that the basis for an
argument can be examined and verified.

3. There must be scope for rich agent interactions and behavior, but
arguments and dialogues must be sufficiently simple to comprehend
and analyse. Human comprehension is aided by requiring arguments
to be reminiscent of real-world argument structures.

4. The scenario should facilitate structured expansion. The benefits of
this are twofold, firstly it enables the basic assumptions of the initial
scenario to be developed, and secondly it enables the scope of the ini-
tial scenario to be widened. The intuition is that no single problem
will enable a full analysis of all computational dialectics but that the
interpolation of results from a number of problems will give a compre-
hensive picture of the abilities of a system.

The aim is not to produce a solution to the four-colour problem, but to
provide a basis for the automatic production of a body of dialogues according
to the rules of computational dialectic systems. The dialogues can then be
analysed and used to identify the effects of differing formulations of rules
on the resultant dialogues. Essentially this is an experimental apparatus
in which every functional aspect of the agents is kept static other than the
dialectic and some carefully defined aspects of the agents knowledge which
facilitates dynamic behaviour. Differences between the resultant dialogues
can then be traced back to the differences in the formulation of rules for the
dialectic.



3 Scenario: GC0

The initial graph-colouring scenario, named GC0, specifies an initial sce-
nario for testing computational dialectic. GC0 is presented as a starting
point for examining computational dialectic. The elements of the core sce-
nario are presented as follows:

Colours Each agent possesses a colour state attribute. Colour states are
selected from a fixed pool. The number of colours is fixed at four; red,
yellow, green and blue.

Relationships Each agent maintains relationships with a known set of
other agents. Graph-theoretically, if agents are vertices then a relationship
is defined as an edge joining two vertices. Where two vertices are joined by
exactly one edge those vertices are called neighbours. Neighbours are only
ever connected directly by one edge although there may be higher order
relationships connecting two vertices through other vertices. Relationships
are initiated during system startup and are fixed throughout the duration
of the MAS.

Agent Knowledge At start-up an agent knows only its own colour and a
set of neighbouring agents. An agent must therefore research other agents in
the MAS in order to increase its knowledge base. To achieve this the agent
must engage in information-seeking dialogue with its neighbours in order to
find out the colour properties and relationships of the other agents. Matters
are further complicated because knowledge is uncertain. Whilst an agent
can only ever be in a single colour state at any given time that colour state
is mutable, it changes with time as the agent determines that another colour
state is more suitable. The other agents in the system do not necessarily
know that a particular agent has changed colour and might attempt to use
information that is no longer accurate. As a result the agents must reason
with uncertain and dynamic information in order to achieve their goals.

Conflicts Conflicts occur when neighbouring agents are in the same colour
state. Conflict is defined in a graph as the state where two vertices connected
by one edge are the same colour.

Goals The initial goal of all agents in GC0 is to resolve all conflicts with
their neighbours.



Actions An agent can elect to change its own colour state at will.

Conflict Resolution When a conflict occurs it is necessary to resolve the
situation between the conflicting agents in accordance with the agents goals.
If the agents who are parties in a conflict have available colours states to
which they can change and which will not bring them into further conflict
with other agents then either agent may change to one of those colour states.
These colour states are referred to as free-colours. If there are no free-colours
the conflicting agents must determine which agent should change colour to
resolve the current conflict even though further conflicts result.

Communication Agents can engage in dialogue with their neighbours.
The protocols which regulate the communicative acts made during dialogue
are formal dialectic systems. Communication is the only means which agents
can use to influence the actions of other agents and thereby bring about
conflict resolution or to increase their knowledge about other agents rela-
tionships and colour states. During a conflict agents use computational
dialectics to present arguments to each other with the aim of resolving the
conflict. The formal dialectic systems specify the moves that can be made
at any given time and the effects of making those moves but not the argu-
ments themselves. Individual formal dialectic systems are expressed using a
unified specification format [27].

Arguments Agents use their knowledge of relationships and conflicts to
produce arguments. Arguments are expressions of support relations between
concepts in the agents knowledge stores. There is a preference ordering
over the arguments that an agent can produce which enables an agent to
determine which arguments are acceptable [2]. Provided that an agent has
sufficient knowledge and that the current state of the system is such that
an argument can be produced, then whenever a move requires production of
some argument the agent should be able to furnish such an argument from
its knowledge store.

4 Implementation: Sweetwater

Sweetwater is a multi-agent implementation of GC0. It is written in Java
and uses the Jackdaw University Development Environment (JUDE). Jack-
daw is a lightweight, flexible, industrial-strength agent platform that utilises



a modular approach to agent development [9]. The domain specific function-
ality of sweetwater agents is encapsulated into modules which can be dynam-
ically loaded into Jackdaw agents at runtime. Individual components are
implemented that correspond to particular aspects of functionality within a
sweetwater agent. These include reasoning, dialectic, argument and knowl-
edge components. Communication between these components is mediated
by public interfaces. This approach enables individual agent components to
be replaced with new functionality as required.

4.1 Overview

The dialogue manager module does the reasoning for the sweetwater agent.
The reasoning algorithm requires the dialogue manager to access the di-
alectic manager to determine what moves can be made. Formal dialectic
moves specify various types of information that can stand as content for
the move. This information is cached in the knowledge store which can be
accessed directly or mediated by the argument manager. For each move,
the dialogue manager accesses the knowledge store or argument manager as
required. The knowledge store is used to retrieve concepts that the agent
knows. The argument manager is used to construct and retrieve arguments
as required by the dialectic system.

4.2 Dialectic Manager

The dialectic manager implements computational dialectics using a unified
formal dialectic specification[27] enabling dialectics to be stored externally
to the implementation in XML files. This treats individual systems of di-
alectic as a set of moves. Each move has a set of requirements, expressed in
terms of earlier dialogue moves, commitment store contents, dialogue events,
and the state of game pieces, and a set of effects, expressed in terms of com-
mitment store updates and dialogue events.This approach enables dialectic
systems to be specified externally and separately to the implementation of
GC0. Dialectics which enables a wide range of ’dialogue-types’ can thus be
implemented. Where a particular form of dialogue proves to be out-with
the scope of GC0 then an enhanced scenario can be implemented.

The unified specification format enables a wide range of formal dialec-
tic systems to be represented efficiently and manipulated in a single soft-
ware implementation. Further, many variations of existing dialectics can be
implemented and executed simply by varying the set of rules held in the



specification file. This enables a systematic exploration of computational
dialectics to be made and the resulting dialogues compared. The effects of
small differences in the rules of a system of dialectic on the resultant dia-
logue can thus be established. This process will lead to the identification of
optimum systems of computational dialectic for a wide range of situations.

4.3 Argument Manager

The argument manager performs two core functions, it constructs arguments
using concepts from the knowledge store, and it enables received arguments
to be analysed and verified. The core purpose of this component is to sup-
ply the argument theoretic content for dialectic moves as required during a
dialogue.

The argument manager stores argument templates. Argument templates
can be characterised as semi-instantiated argumentation schemes [25]. Schemes
are traditionally used to capture stereotypical patterns of reasoning and have
found application in argument analysis [19] and argument generation [20, 4].
Schemes are concerned with the abstract form of arguments regardless of
knowledge domain. Templates are less abstract and are used to specify the
form of typical arguments within a given knowledge domain. Templates are
used to relate knowledge store concepts to each other to construct argu-
ments. This is achieved by specifying parameters for the range and type
of propositions that can stand in each position in the scheme when instan-
tiating an argument. Arguments are conceived in this case as a structure
incorporating a set of premises and a conclusion.

The external interface to the argument module enables the reasoning
component to retrieve argument-theoretic concepts such as premises, con-
clusions, warrants as required. Given an argument object the argument
module can also be used to retrieve rebutting, refuting and undercutting
arguments as required to complete moves suggested by the dialectic system.
This functionality is implemented through the

Individual templates are specified externally to the implementation in an
xml file to enable new templates to be added rapidly with a minimum of
new code. The following xml elements are allowed;

conclusion: 〈conc type=”element type” name=”concept name”〉

premise: 〈prem type=”element type” name=”concept name”〉



parameter: 〈param name=”concept name”〉

where type determines how the content is to be retrieved, a dynamic type
retrieves a concept directly from the knowledge store whilst the conditional
type checks for a condition to be met in the knowledge store before re-
trieving the associated concept. The name parameter simply specifies the
concept that is to be retrieved. The param element specifies concepts that
the conditional-type elements should check before retrieving a concept.

Example Argument Template

〈arg template〉
〈conc type=”dynamic” name=”conflict comparison”〉
〈prem type=”dynamic” name=”num conflicts”〉 my agent name 〈/prem〉
〈prem type=”dynamic” name=”num conflicts”〉 other agent name 〈/prem〉
〈prem type=”conditional” name=”lesser”〉

〈param name=”num conflicts”〉my agent name〈/param〉
〈param name=”num conflicts”〉other agent name〈/param〉

〈/prem〉
〈/arg template〉

Commentary This template specifies parameters for an argument of the
general form, ”you have more conflicts than me because I have n conflicts
and you have m conflicts and n is less than m.” The exact values for the
variables n and m are retrieved from the knowledge store and depend upon
the agents knowledge of the current state of the mas. The conditional de-
termines that n is indeed less than m which determines that there is a valid
inference.

4.4 Reasoning

The reasoning process is implemented in the dialogue manager module. This
module coordinates the functionality of the dialectic manager and the ar-
gument manager. These managers produce sets of legal moves and valid
arguments. These must be integrated to produce a set of fully-instantiated
legal moves, those moves which are legal and have content such that they
satisfy the requirements for the move, and consequently may be uttered.
Fully-instantiated move selection, selecting the move which should be ut-
tered from the moves that can be uttered is the core of the reasoning process.
This is currently achieved through random selection from the set of fully-
instantiated moves. A more mature strategic dialogue manager is included



in the future development path for this module, so that a more structured
selection of moves can be made. For the moment random-selection is suffi-
cient.

5 Towards Metrics for Computational Dialectics

Aspects of computational dialectics and their resultant dialogues which
might be measured fall into two broad categories, inspection metrics, those
metrics which can be measured through external examination of the rules of
the system, and process metrics, those metrics which are most easily mea-
sured through application of the system and subsequent examination of the
results. Many inspection metrics are identified in [13] which sets out thirteen
desirable qualities of argumentative dialogue systems. A range of process
metrics have been identified which can be investigated using sweetwater.
Three initial metrics for investigation include:

Efficiency There are two measures of efficiency that are pertinent. Firstly
there is the efficiency of computational dialectics versus other forms
of reasoning and communication, this is not addressed here. The sec-
ond is the performance of individual systems of dialectic against each
other. This can be examined by isolating as many variables external
to the dialectic system as possible, then comparing between systems,
the average number and size of messages required to satisfy a goal.

Flexibility Through varying the number of argument templates available
to a system, which effectively varies the number of different arguments
available, examine the ability of a system to satisfy goals whilst rea-
soning with less complete knowledge.

Stability Given the same general inputs, does the system converge to the
same set of results?

6 Conclusions and Future Work

GC0 and Sweetwater are a good way to approach the comparative eval-
uation of computational dialectics. It provides a social context for initiat-
ing argumentative dialogue, a simple, structured body of knowledge, and a
means to extract argument-theoretic structures from that knowledge.



Future work involves a systematic exploration of the space of formal di-
alectic systems, the production and analysis of a body of example dialogue
for each system, identification of further process metrics, and the exploration
of enhanced scenarios that build upon GC0.

References

[1] L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using
argumentation. In Proceedings of the Fourth International Conference
on MultiAgent Systems, 2000.

[2] L. Amgoud and S. Parsons. Agent dialogues with conflicting prefer-
ences. In ATAL 2001, pages 190–205, 2004.

[3] M. Ashburner. Drosophila: A Laboratory Handbook. Cold Spring Har-
bor Laboratory Press, 1989.

[4] K. Atkinson, T. Bench-Capon, and P. McBurney. Justifying practical
reasoning. In I. Rahwan, P. Moraitis, and C. Reed, editors, First Inter-
national Workshop on Argumentation in Multi-Agent Systems, 2004.

[5] T. J. M. Bench-Capon. Specification and implementation of toulmin
dialogue game. In Proceedings of JURIX 98, pages 5–20, 2001.

[6] A. Cayley. Open problem. Proceedings of the London Mathematical
Society, 9:148, 1878.

[7] R. A. Girle. Commands in dialogue logic. Practical Reasoning: Interna-
tional Conference on Formal and Applied Practical Reasoning, Springer
Lecture Notes in AI, 1996.

[8] C. L. Hamblin. Fallacies. Methuen and Co. Ltd., 1970.

[9] Calico Jack Ltd. http://www.calicojack.co.uk, 2005.

[10] J. D. Mackenzie. Question begging in non-cumulative systems. Journal
Of Philosophical Logic, 8:117–133, 1979.

[11] N Maudet and F. Evrard. A generic framework for dialogue game
implementation. In Proceedings of the Second Workshop on Formal
Semantics and Pragmatics of Dialog, 1998.

[12] P. McBurney, D. Hitchcock, and S. Parsons. The eightfold way of de-
liberation dialogue. International Journal of Intelligent Systems, 2002.



[13] P. McBurney, S. Parsons, and M. Wooldridge. Desiderata for agent
argumentation protocols. Proceedings of the First AAMAS, pages 402–
409, 2002.

[14] J. McCarthy. Ai as sport. Science, 276(5318):1518–1519, 1997.

[15] J. McCarthy. Elaboration tolerance, 1998.

[16] D. Moore and D. Hobbes. Computational uses of philosophical dialogue
theories. Informal Logic, 18(2 and 3):131–163, 1996.

[17] T. J. Norman, D. V. Carbogim, E. C. W. Krabbe, and D. N. Wal-
ton. Argument and multi-agent systems. In Argumentation Machines,
chapter 2, pages 15–54. Kluwer Academic Publishers, 2004.

[18] S. Parsons and N. R. Jennings. Negotiation through argumentation. In
Proceedings of ICMAS’96, pages 267–274, 1996.

[19] C. Reed and G. Rowe. Araucaria: ”software for puzzles in argument
diagramming and xml. Technical report, University Of Dundee, 2001.

[20] C. Reed and D. Walton. Towards a formal and implemented model
of argumentation schemes in agent communication. In I. Rahwan,
P. Moraitis, and C. Reed, editors, First International Workshop on
Argumentation in Multi-Agent Systems, 2004.

[21] N. Rescher. Dialectics. State University of New York Press, Albany.,
1977.

[22] H. Simon and J. Schaeffer. The game of chess, 1992.

[23] G. A. W. Vreeswijk. Interpolation of benchmark problems in defeasible
reasoning. In WOCFAI, pages 453–468, 1995.

[24] G. A. W. Vreeswijk and F. P. M. Dignum. Towards a testbed for multi-
party dialogues. In Workshop On Agent Communication Languages,
pages 212–230, 2003.

[25] D. Walton. Argumentation Schemes for Presumptive Reasoning.
Lawrence Erlbaum Associates, 1996.

[26] D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue. SUNY
series in Logic and Language. State University of New York Press, 1995.



[27] S. Wells and C. Reed. Formal dialectic specification. In I. Rahwan,
P. Moraitis, and C. Reed, editors, First International Workshop on
Argumentation in Multi-Agent Systems, 2004.


