
Testing Formal Dialectic

Simon Wells and Chris Reed

Division of Applied Computing, University of Dundee, Dundee, UK, DD1 4HN
{swells, chris}@computing.dundee.ac.uk

Abstract. Systems of argumentation or ’computational dialectic’ are
emerging as a powerful means of structuring inter-agent communication
in multi-agent systems. Individual systems of computational dialectic
have been suggested and implemented to tackle specific problems but no
comprehensive and comparative assessment has been made of such sys-
tems. This paper introduces ScenarioGC0, a framework for the implemen-
tation and testing of a wide range of computational dialectic systems.
ScenarioGC0 has a range of benefits for both theoretical and practical
work in computational dialectics, including: a means to test arbitrary
dialectic systems using a unified knowledge base; a means to determine
standard metrics by which dialectic systems can be measured and com-
pared; enabling a body of example dialogue to be assembled for each
dialectic system to demonstrate their qualities.

1 Introduction

Certain organisms are used in biological sciences research as models against
which to measure new theories. One such organism is Drosophila Melanogaster
a type of fruit fly [2] which is considered particularly important because much
is known about this organism. The body of knowledge about drosophila is used
as a base line against which to test new theories without extra investment in
setting up an experimental structure. New results are thus compared and con-
trasted against the large body of experimental data already collected. Herbert
Simon [20], and later John McCarthy [14] refer metaphorically to the game of
Chess as a ”drosophila” for AI. In a similar vein McCarthy also proposes the
missionaries and cannibals problem as a drosophila for problems in logical AI
[15]. The suggestion is that certain classes of problems, puzzles and games can be
used to quantify progress in the field of AI overall and to demonstrate individual
theories within the field.

This paper presents a drosophila for computational dialectics which we call
ScenarioGC0 together with an implementation framework. The framework en-
ables formal dialectic systems to be rapidly implemented and example dialogues
to be produced. This process can be used to investigate the properties of dialectic
systems. The results of such an investigation can in turn be used to inform the
research, construction and implementation of computational dialectic systems.

Metrics can be identified for dialectic systems and measurements made of
the output from running dialectic systems against ScenarioGC0. This allows the



behavior of each system to be examined and quantitative measurements to be
derived for those behaviors. The behavior of dialectic systems can thus be mea-
sured, compared and evaluated. This fulfills a need in the field of agent commu-
nication for a means to evaluate systems of computational dialectic. It also takes
the first steps towards building a corpus of example dialogue for each system,
generated by an actual implementation of that system. This process enables the
identification of the circumstances in which a particular formal dialectic system
is most appropriately deployed. It can be used to demonstrate the benefits and
efficacy of that formal dialectic system to potential implementors.

2 Problem

Formal dialectic systems were proposed in [7] as practical means to model the
interactions between participants in a dialogue in order to examine the situations
in which logical fallacies occur. Formal dialectic systems are two-player, turn
taking games. The players use their turn to make moves according to the rules of
the system. Formal dialectic systems specify the kinds of things that can be said
by a participant in a dialogue and when those things can or cannot be said. They
don’t however make any provision for the propositional content of what is said
but concern themselves with the speech acts that are uttered during each players
move. Many dialectic systems have been proposed including but not limited to,
H [7], DC [10], DL3 [6], PPD [22], R [19] as well as related systems such as
the Toulmin Dialogue Game [4], the case study games [11], the eightfold model
[12] and variations on existing dialogue games [1]. In addition argumentation,
particularly through dialogue games and formal dialectic systems have been
proposed as means to structure argumentative dialogue between agents in a
MAS [16].

No substantial attempt has been made to establish which system is best for
a given application. Many systems have been proposed and many more are pos-
sible yet there has been no structured way to approach the specification and
implementation of formal dialectic. There has also been no structured approach
to establishing the grounds upon which a comparison of systems might be built.
Computational testing incorporating the unified specification and implemen-
tation of formal dialectic and the production of empirical data from running
those systems under known conditions is required. This enables the properties
of individual systems of formal dialectic to be determined such that those cir-
cumstances to which a given system might be best applied can be established.
Because formal dialectic systems make use of but do not provide a formulation
for the propositional content of a players moves, the framework that implements
a game for testing purposes must supply data that can function as the content of
the moves made during a dialogue. Additionally this data must have some pro-
vision for argument structures so that the dialogues generated are reminiscent
of real-world interactions.

A testing framework should implement a scenario that enables the following:
(1) facilitate structured extension and enhancement, (2) enable the automatic



generation of arguments with a clear basis for those arguments in the structure of
the scenario, (3) produce results that are easily analysed, compared and verified.
Further, in a multi-agent system context, a scenario needs to provide a basis
for at least the following behaviour: (1) goals that agents can pursue, (2) state
changing actions which individual agents can perform. Agents can thus engage in
dialectic based inter-agent communication to influence other agents to perform
actions in pursuit of goal satisfaction.

3 Scenario

The four colour problem [5]asks whether any map can be coloured using only
four colours such that no two neighbouring regions share the same colour. In
graph theoretic terms each region of a map may be considered to be a vertice in
a graph. It may then be asked whether, given a connected planar graph, only four
colours are required to assign each vertice a colour such that no neighbouring
vertices share the same colour. For non-planar graphs it may be asked whether
the graph can be coloured using n colours such that no neighbouring vertices
share the same colour. These type of problems are generally referred to as graph-
colouring problems. Scenario0 uses graph colouring problems to provide a basis
for an agent society.

The first graph colouring scenario, ScenarioGC0, is conceived as a testing
domain for computational dialectic systems that provides a social context for
initiating argumentative dialogue and a knowledge domain to provide a basis for
argumentative discourse between agents in a MAS. These properties are lever-
aged to provide automated, iterative and comparative testing of computational
dialectic systems.

The aim is not to provide a solution to a graph colouring problem but to
generate test data for computational dialectic systems using a MAS based char-
acterisation of the problem as the basis for argument generation.

3.1 ScenarioGC0

This scenario is presented as a starting point for examining various types of di-
alogue including but not limited to information-seeking, persuasion and negotia-
tion. The elements of a core scenario, called ScenarioGC0, for the graph-colouring
problem domain are presented as follows;

Scenario Specific Properties Each agent in the MAS possesses a colour status.
Colours are selected from a fixed pool of colours available to that instance of
the scenario. As an initial starting point the pool of colours is fixed at four, red,
yellow, green and blue which is reminiscent of the four colour problem. Each
agent maintains relationships with a set of other agents in the MAS which are
its neighbours. Relationships are defined as an edge joining two vertices. In those
cases where two vertices are joined by exactly one edge those vertices are called
neighbours. Neighbours are only ever connected directly by one edge although



there may be higher order relationships connecting two vertices through other
vertices. Relationships are set during system startup and are fixed throughout
the duration of the MAS.

Agent Knowledge At start-up an agent knows only its own colour and a set of
neighbouring agents. An agent must therefore research other agents in the MAS
in order to increase its knowledge base. To achieve this the agent must engage
in dialogue with its neighbours in order to find out the colour properties and
relationships of the other agents and identify any conflicts. Conflicts occur when
neighbouring agents possess the same colour property. The kind of arguments
that an agent can muster and the persuasiveness of those arguments is tied very
closely to the knowledge that an agent has. Matters are further complicated
because knowledge is uncertain. Whilst an agent can only ever be in a single
colour state at any given time that colour state is mutable, it changes with time
as the agent determines that another colour state is more suitable. The other
agents in the system do not necessarily know that a particular agent has changed
colour and might attempt to use information that is no longer accurate. As a
result the agents must reason with uncertain and dynamic information in order
to achieve their goals.

Conflicts Conflicts occur when two neighbouring agents share the same colour
and is defined as a graph in which two vertices connected by one edge are the
same colour. When a conflict occurs it is necessary to resolve the situation.
Individual agents have at their disposal the capability to communicate with
other agents in order to facillitate a resolution but they have no power to directly
influence another agent other than through argumentative dialogue.

Goals Agents in the MAS maintain goals which pertain directly to the scenario.
An agent initially has a single goal, to resolve all conflicts with its neighbours.

Actions An agent can elect to change its own colour at will should the colour
change not bring it into conflict with any of its neighbours. Where there is conflict
between agents those agents may elect to change their individual colours in order
to remove that conflict. If an agent can change to a free colour, defined as a colour
that none of its neighbours currently possesses, then that is the course of action
an agent should take. If there are no free colours then an agent might have to
change to a colour already possessed by another neighbour even though this
will bring it into conflict with that neighbour. In this case the colour change,
and resulting movement from a conflict with one neighbour to a conflict with a
second neighbours depends upon the argumentation process that has occurred
and the agents own internal reasoning.

Conflict Resolution On discovering a conflict between itself and a neighbouring
agent, an agent can make use of the formal-dialectic system at its disposal to
bring about a resolution of that conflict. The formal dialectic system might offer



various means of conflict resolution involving aspects of, for example, persua-
sion, negotiation or deliberation. The process of an actual dialogue in terms of
the moves that can be made at any given time, the requirements for successful
completion of those moves and the effects of a successful move are bound up in
the specification of that formal dialectic system as proposed in [23].

Arguments The agents use arguments to support and justify the actions per-
formed in the system. Formal dialectic systems generally make use of arguments
as the content of moves. In this case the arguments are simply propositions that
are used to support other propositions and in so doing are used to make a case
for the performance or non-performance of some action. Provided that an agent
has sufficient knowledge and that the current state of the system is such that
an argument can be produced, then whenever a move requires production of
some argument the agent should be able to furnish such an argument from its
knowledge store.

4 Implementation

A framework to support dialectic testing has been constructed using the Java
language and the Jackdaw Agent Framework[9] through the Jackdaw University
Development Environment (JUDE). Jackdaw is a lightweight, flexible, industrial-
strength agent platform that uses a modular approach to agent development.
This enables domain specific functionality to be encapsulated into a module
which can be dynamically loaded into a Jackdaw agent at runtime. A Jackdaw
module has been implemented that facilitates dialogue between agents in a Jack-
daw MAS. The module implements the graph-colouring scenario to enables the
automated testing of formal dialectic. The module, named the dialogue man-
ager, is comprised of several data stores and processing components. The data
stores include the protocol store, commitment store, dialogue store, template
store and knowledge store. The processing components which manipulate the
contents of the data stores include an argument manager to facilitate the pro-
duction of arguments, a protocol manager to govern the process of engaging in
argumentative dialogue, and a reasoning component which is embodied in the
dialogue manager to facilitate overall control and goal-directed behavior within
the module. An overview of the system is shown in 1.

4.1 Protocol Store

The types of communicative acts that an agent can make during a dialogue are
regulated by the formal dialectic system in force for that dialogue. The formal
dialectic system is stored in a specification format [23] that enables the specifica-
tion and implementation of arbitrary Hamblin-type formal dialectic systems[7].
Formal dialectic systems have traditionally been specified through lists of locu-
tion, commitment, structural and completion rules. Instead, because all a player
can do is make moves, moves are made central to the specification of a system



Fig. 1. An overview of the testing framework



and a consideration is made of the effects of making the move and the require-
ments for doing so. A formal-dialectic system is thus treated merely as a set of
moves which the players can make during their turn. Each move is specified in
terms of a set of requirements for the move to be legal and the effects of making
the move. This has the benefit of enabling systems to be written in a compact
format that is both human and machine readable. The range of parameters for
move requirements and effects thus far identified enable the following systems to
be implemented, H [7], DC [10], DL3 [6], PPD [22], R [19], as well as a myriad of
variations on each individual system. Each set of moves that comprise a formal
dialectic system is stored in an xml file. Agents can load systems dynamically
at runtime to enable the rapid development, implementation and evaluation of
new systems.

4.2 Dialogue Store

The dialogue store maintains the transcripts of each dialogue that an agent en-
gages in. This is required for two reasons. Firstly, to fulfill the purposes of a
testing framework, It is necessary that not only are results produced by the sys-
tem but that the process of achieving those results is both clearly represented
and easily comprehended. Secondly, the rules of many formal dialectic systems
rely upon being able to verify earlier dialogical events and the process of pro-
ducing arguments can be simplified if a store of arguments that have already
been used is maintained. Thus the dialogue store maintains responsibility not
only for enabling an agent to maintain some memory of earlier dialogical events
but also for the production of transcripts of each dialogue for use in the analysis
and verification process.

4.3 Commitment Store

The commitment store maintains a record of the commitments of the partic-
ipants during a dialogue. In addition to storing the current commitments of
participants, in accordance with the current formal dialectic rules, the commit-
ment store enables earlier commitments which might have since been retracted
to be examined. This enables rules to be formulated that govern whether a move
is admissible based upon whether it has ever been committed to in the past.

4.4 Protocol Manager

The protocol manager utilises the protocol, dialogue and commitment stores in
order to govern the process of engaging in argumentative dialogue. This process
involves determining the current set of legal moves that can be made dependent
upon the moves allowed by the system, earlier moves in the current dialogue and
the state of the player’s commitment stores.



4.5 Knowledge Store

The knowledge store contains the agents beliefs about agent properties and re-
lationships. This knowledge is represented in an xml file which enables agent
knowledge to be organised in a top-down fashion. This facilitates the struc-
tured expansion of the concepts that an agent can store as enhanced scenarios
are implemented whilst maintaining a strong correspondence between an agents
knowledge and the scenario. The knowledge store is essentially a frame-based
implementation of knowledge representation. The following tags, once instanti-
ated, are sufficient to record all the information that an agent needs to know to
operate successfully in ScenarioGC0:
〈name〉is a given agent’s unique identifier for some other agent in the MAS.
〈colour〉is the status of the colour property for the agent indicated by the name
tag.
〈neighbour of〉records an agent’s neighbour. Each neighbour of each agent is
recorded using this tag.
The knowledge store provides an interface that enables other components within
the agent, such as the argument manager, to retrieve and make use of informa-
tion. The core of this interface are the getConcept and checkCondition methods.
The getConcept method is used to retrieve a proposition from the knowledge
store and the check condition method is used to verify that the store contains
a particular concept. An agent’s knowledge is expanded by adding new tagged
data to the store or by specifying methods that process the existing information
to extract new concepts. For example the number of conflicts that agent1 has is
not stored explicitly but can be calculated by counting the number of neighbours
of agent1 who have the same colour state as agent1.

4.6 Template Store

The template store contains argument templates. Argument templates can be
characterised as semi-instantiated argumentation schemes. Argumentation schemes
are traditionally used to capture stereotypical patterns of reasoning and have
been used in argument analysis [17, 21] and argument generation [18, 3]. Argu-
ment templates are less abstract than argumentation schemes. Templates spec-
ify the form of possible arguments within a given knowledge domain whereas
schemes are concerned with the form of arguments regardless of the actual con-
tent of the arguments. Agents construct arguments by completing a template
from the template store with propositional content garnered from the knowledge
store to produce an argument instantiation. A template consists of a number of
components; a conclusion, a set of one or more premises and a warrant relating
the premises to the conclusion. Each component in a template may take one of
three forms; static, dynamic or conditional. Static components are expressed in
the form of propositions which do not change with respect to the agent’s knowl-
edge store. Dynamic components relate to concepts which can be extracted from
the knowledge store, the exact values of which vary over time as the agent learns



of changes in its situation. Conditional components specify knowledge store con-
cepts which must have particular values. Each component also has a name which
corresponds to a concept in the knowledge base. When completing an argument
template the getConcept method of the knowledge store is called with the type
and name as parameters. This approach enables agents to construct arguments
using the dynamic information that they have gathered during interactions with
other agents in the system whilst maintaining strict control over the structure
of said arguments. The aim here is not to implement a comprehensive model of
argument generation but to enable dynamic arguments to be generated in a very
controlled manner, to produce known inputs for the process of testing dialectic
systems.

Argument templates are specified in an xml document that allows the fol-
lowing tags:
〈template〉is the name for this template
〈scheme〉is the scheme associated with this template
〈conc type=”type” name=”name”〉is the conclusion of the argument
〈prem type=”type” name=”name”〉is a premise in this argument.
〈warrant type=”type” name=”name”〉links the premises to the conclusion.

The Templates ScenarioGC0 implements several argument templates that
build upon the concepts of reducing agent conflicts and increasing the stabil-
ity of areas of the MAS with respect to agent colour states. For a group of
agents of depth d centered around a particular agent, the stability of that group
can be measured as the sum of those agents conflicts. The lower the number
of conflicts the higher the stability of the agents. The intuition is that agents
in more stable areas should make a colour change even if it leads to another
conflict if this colour change will increase the stability of the other agent in the
less stable area. The templates attempt to capture a path of reasoning from an
agent’s basic knowledge of colour states and relationships through to a course
of action that is based upon that knowledge. As more templates are added to
the store agents are able to engage in more varied dialogical behaviours and
construct a wider range of arguments. An Araucaria analysis diagram of argu-
ments produced from some of the templates is shown in figure 2. The following
template fragment provides an argument for an agent making a colour change
based on the fact that they have a conflict and that one agent has more conflicts
than the other;
〈conc type=”static” name=”colour change”〉You should change colour〈/conc〉
〈prem type=”conditional” name=”conflict check” /〉
〈prem type=”conditional” name=”conflict comparison” /〉
The name parameters for each of the premises are passed into the knowledge
store and a proposition is returned for each premise which can be expressed as
required by the agent as the content of a move. Typically the proposition re-
turned for the conflict check parameter would ”We are in conflict” and that for
the conflict comparison parameter might be ”You have more conflicts than me”.



Fig. 2. Instantiations of the arguments specified for the scenario GC0



Template Chaining The use of argument templates to provide arguments
from the knowledge store suitable for use during a dialogue relies upon the use
of template chaining. Template chaining involves following the path between
templates as required to provide support for a given position. Working from
a conclusion, an agent can determine the premises that lend support to that
conclusion. The agent can then get supporting data for each premise by treating
each premise as the conclusion to a further argument which is in turn supported
by other premises. The agent thus finds templates which provide support for
each premise and chains through the template store instantiating arguments
until the premises are based on data which is self-evident from the MAS such as
agent colours or relationships. Thus an agent can backwards chain through the
templates from the conclusion of an argument to infer the basis for the argument.
Likewise an agent can use its observations of agent states and relationships to
determine a course of action to follow in pursuit of its goals by forward chaining
through the templates.

4.7 The Dialogue Manager

The dialogue manager itself implements the basic reasoning required by the mod-
ule and coordinates the abilities of the protocol and argument managers. The
basic reasoning process that the dialogue manager follows is to find out what
options it has at each juncture, e.g. which moves can legally be made. This is
achieved by interacting with the protocol manager. The dialogue manager must
then determine which moves can be fully instantiated with propositional content
from the agents knowledge store, this process is mediated by the argument man-
ager. If an argument is required then the agent utilises the scheme and knowledge
stores in an attempt to construct a fully instantiated argument.

5 Metrics For Computational Dialectics

The testing of systems of computational dialectic leads to greater benefits than
merely refining the rules of existing games and producing examples. Metrics can
be identified by which each distinct dialectic system can be distinguished and cat-
egorised. Metrics fall into two broad categories, inspection metrics, those metrics
which can be measured through external examination of the rules of a system,
and process metrics, those metrics which are most easily measured through appli-
cation of the system and subsequent examination of the results. Many inpection
metrics are identified in [13] which sets out 13 desirable qualities of argumenta-
tive dialogue systems. These include; statement of purpose, diversity of purposes,
inclusiveness, transparency, fairness, clarity of theory, separation of syntax and
semantics, rule-consistency, encouragement towards resolution, discouragement
of disruption, change of position, and system and computational simplicity.

A number of process metrics have been identified that can be applied to
the dialogues produced using a computational dialectic system in order to gain
insights into that system. The following list is representative but not exhaustive;



5.1 Simplicity of Representation

Communicative Act How complex are the communicative acts required by
the system?

System How complex is the computational representation of the rules of the
system?

5.2 Efficiency of Process

Communication Size and number of messages
Computational How much computational power does the system require?
Optimality How optimal are dialogue results?
Completion Do all dialogues complete? Are deadlocks avoided? Does the

system specify completion conditions?
Repetition Is repetition of utterances minimised?

5.3 Flexibility

Data Requirements How complete does data have to be for a dialogue to
reach a satisfactory completion

5.4 Expressiveness

Evolution Can participants effect a change of position during a dialogue?
Range Which profiles of dialogue [8] are permitted or prohibited by the sys-

tem?
Symmetry Are the same moves available to each participant? Is this always

the case?

5.5 Representativeness

Realism How representative of real world arguments are the resultant dia-
logues? This is not a prescription for realism but an objective measurement
and comparison.

5.6 Stability

Reproducibility Given the same general inputs, does the system converge
to the same set of results?

Predictability Can the results of a dialogue be predicted?

The analysis of dialogues generated by a given system can be used to make
direct measurements of some metrics, for example, aspects of the efficiency of
process[communication] metric can be examined directly. The average number
and size of communicative acts per dialogue can be measured and compared
between systems. This is sufficient to enable a quantitative comparison to be



made between systems on the basis of communicative efficiency. Other metrics
rely upon further knowledge against which to compare results, for example, the
expressiveness[range] metric relies upon knowledge of the range of possible dia-
logue profiles. Actual measurements of inspection and process metrics can thus
be used to categorise individual dialectic systems. This will enable developers
to select dialectic systems for use on the basis of their measured attributes and
performance.

6 Results

6.1 An Example DC Dialogue

Agent1 and Agent2 are neighbours who are in the same colour state, hence they
are in conflict. Upon discovering this Agent1 initiates a dialogue to resolve the
conflict. Because of the colour distribution of their neighbours neither agent has
any free colours hence any colour change will result in conflict.

Agent1 Statement(”Agent2 should change colour”)
Agent2 Challenge(”Agent2 should change colour”)
Agent1 Defense(”Agent2 is more stable than Agent1”)
Agent2 Challenge(”Agent2 is more stable than Agent1”)
Agent1 Defense(”Agent2 has less conflicts than Agent1”)
Agent2 Challenge(”Agent2 has less conflicts than Agent1”)
Agent1 Defense(”Agent2 has 2 conflicts ∧ Agent1 has 3 conflicts”)
Agent2 Statement(”Agent2 should change colour”)

6.2 An Example H Dialogue

Agent1 Statement(”Agent2 should change colour”)
Agent2 Challenge(”Agent2 should change colour”)
Agent1 Support(”Agent2 is more stable than Agent1”)
Agent2 Challenge(”Agent2 is more stable than Agent1”)
Agent1 Support(”Agent2 has less conflicts than Agent1”)
Agent2 Challenge(”Agent2 has less conflicts than Agent1”)
Agent1 Support(”Agent2 has 1 conflict ∧ Agent1 has 3 conflicts”)
Agent2 Statement(”Agent2 should change colour”)

The examples demonstrate the application of the implementation of ScenarioGC0

to conflict resolution using the dialectic systems DC and H. The implementation
enables agents to engage in information seeking dialogues to discover informa-
tion about their neighbours and to resolve conflicts when they are discovered
through persuasion type dialogues.



7 Conclusions

ScenarioGC0 and the associated implementation framework are a good way to
test systems of formal dialectic through computational implementation. As a
baseline it provides a simple, structured body of domain knowledge which forms
the content of communicative acts within argumentative dialogue. Further the
content of communicative acts is tied closely to the structure of the system and
the information inherent in that structure. The basic scenario fulfills the needs
of a system for automated production of simple dialogue for testing purposes.
The simple nature of generated dialogues can be made more complex through
the addition of new argumentation templates to the template store, through the
addition of new parameters to the system structure and hence the knowledge
of each agent, and through the specification and addition to the protocol store
of new systems of formal dialectic. The architecture enables a wider field of
experimentation than solely testing models of computational dialectic through
the replacement of any or all components so a different model of knowledge might
easily be incorporated or different model to govern communications. This is in
addition to the flexibility of xml based input data providing a simple, efficient
and flexible upgrade path for argument templates, agent knowledge and dialectic
systems.

ScenarioGC0 enables the comparative testing of arbitrary systems of formal
dialectic using a standardised knowledge base so that differences in results stem
from differences in the dialectic system. It has enabled steps to be taken to-
wards a system of standardised metrics for computational dialectics. Finally it
facilitates the automated construction of a corpus of computationally generated
dialogue which can be used to compare and contrast the performance of differ-
ent systems of dialectic. Ongoing work with ScenarioGC0 involves the testing and
comparison of a wide range of formal dialectic systems and dialogue games, the
identification of further metrics according to which systems of computational di-
alectics might be classified, the implementation of additional enhanced scenarios
and new argumentation templates.

8 Acknowledgements

This research is funded by EPSRC under the Information Exchange project.
Gratitude is expressed to Calico Jack Ltd. for their JackDaw agent framework
and JUDE development environment.

References

1. L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumenta-
tion. In Proceedings of the Fourth International Conference on MultiAgent Systems,
2000.

2. M. Ashburner. Drosophila: A Laboratory Handbook. Cold Spring Harbor Labora-
tory Press, 1989.



3. K. Atkinson, T. Bench-Capon, and P. McBurney. Justifying practical reasoning.
In I. Rahwan, P. Moraitis, and C. Reed, editors, First International Workshop on
Argumentation in Multi-Agent Systems, 2004.

4. T. J. M. Bench-Capon. Specification and implementation of toulmin dialogue
game. In Proceedings of JURIX 98, pages 5–20, 2001.

5. A. Cayley. Open problem. Proceedings of the London Mathematical Society, 9:148,
1878.

6. R. A. Girle. Commands in dialogue logic. Practical Reasoning: International
Conference on Formal and Applied Practical Reasoning, Springer Lecture Notes in
AI, 1996.

7. C. L. Hamblin. Fallacies. Methuen and Co. Ltd., 1970.
8. E. C. W. Krabbe. Profiles of dialogue. In J. Gerbrandy, M. Marx, M. de Rijke,

and Y. Venema, editors, JFAK - Essays Dedicated to Johan van Benthem on the
occasion of his 50th birthday. Amsterdam University Press, 1999.

9. Calico Jack Ltd. http://www.calicojack.co.uk, 2005.
10. J. D. Mackenzie. Question begging in non-cumulative systems. Journal Of Philo-

sophical Logic, 8:117–133, 1979.
11. N Maudet and F. Evrard. A generic framework for dialogue game implementation.

In Proceedings of the Second Workshop on Formal Semantics and Pragmatics of
Dialog, 1998.

12. P. McBurney, D. Hitchcock, and S. Parsons. The eightfold way of deliberation
dialogue. International Journal of Intelligent Systems, 2002.

13. P. McBurney, S. Parsons, and M. Wooldridge. Desiderata for agent argumentation
protocols. Proceedings of the First AAMAS, pages 402–409, 2002.

14. J. McCarthy. Ai as sport. Science, 276(5318):1518–1519, 1997.
15. J. McCarthy. Elaboration tolerance, 1998.
16. S. Parsons and N. R. Jennings. Negotiation through argumentation. In Proceedings

of ICMAS’96, pages 267–274, 1996.
17. C. Reed and G. Rowe. Araucaria: ”software for puzzles in argument diagramming

and xml. Technical report, University Of Dundee, 2001.
18. C. Reed and D. Walton. Towards a formal and implemented model of argumen-

tation schemes in agent communication. In I. Rahwan, P. Moraitis, and C. Reed,
editors, First International Workshop on Argumentation in Multi-Agent Systems,
2004.

19. N. Rescher. Dialectics. State University of New York Press, Albany., 1977.
20. H. Simon and J. Schaeffer. The game of chess, 1992.
21. D. Walton. Argumentation Schemes for Presumptive Reasoning. Lawrence Erl-

baum Associates, 1996.
22. D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue. SUNY series in

Logic and Language. State University of New York Press, 1995.
23. S. Wells and C. Reed. Formal dialectic specification. In I. Rahwan, P. Moraitis, and

C. Reed, editors, First International Workshop on Argumentation in Multi-Agent
Systems, 2004.


